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Abstract—A novel superpixel-based discriminative sparse model
(SBDSM) for spectral–spatial classification of hyperspectral im-
ages (HSIs) is proposed. Here, a superpixel in a HSI is considered
as a small spatial region whose size and shape can be adap-
tively adjusted for different spatial structures. In the proposed
approach, the SBDSM first clusters the HSI into many superpixels
using an efficient oversegmentation method. Then, pixels within
each superpixel are jointly represented by a set of common atoms
from a dictionary via a joint sparse regularization. The recovered
sparse coefficients are utilized to determine the class label of the
superpixel. In addition, instead of directly using a large number
of sampled pixels as dictionary atoms, the SBDSM applies a
discriminative K-SVD learning algorithm to simultaneously train
a compact representation dictionary, as well as a discriminative
classifier. Furthermore, by utilizing the class label information of
training pixels and dictionary atoms, a class-labeled orthogonal
matching pursuit is proposed to accelerate the K-SVD algorithm
while still enforcing high discriminability on sparse coefficients
when training the classifier. Experimental results on four real
HSI datasets demonstrate the superiority of the proposed SBDSM
algorithm over several well-known classification approaches in
terms of both classification accuracies and computational speed.

Index Terms—Dictionary learning, discriminative sparse model,
hyperspectral image (HSI) classification, sparse representation,
superpixel.

I. INTRODUCTION

HYPERSPECTRAL sensors can acquire digital images
in more than 100 narrow contiguous bands, spanning

the visible-to-infrared spectrum. Each pixel in a hyperspectral
image (HSI) is a high-dimensional vector whose entries are the
spectral responses of various spectral bands. The very informa-
tive spectral information of the HSI pixels can be utilized to
distinguish objects in the image scene.
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In HSI classification, each pixel is labeled as belonging to
one of the classes based on their spectral characteristics, given
a representative training set from each class. During the last
three decades, a large number of techniques have been devel-
oped for HSI classification. Among these, the support vector
machine (SVM) [1] is a very powerful HSI classifier [2], [3].
Multinomial logistic regression [4]–[6], which uses the logistic
function to compute the posterior probability, is another widely
used classifier. The artificial immune network and biological
deoxyribonucleic acid computing are two computationally in-
telligent models, which are also applied in HSI classification
[7], [8]. Generally, although the aforementioned classifiers can
effectively utilize the spectral information of the HSI, they do
not consider the spatial context. Recently, to further improve
classification performance, approaches based on composite ker-
nels [9], support vector conditional random fields [10], and seg-
mentation [11], [12], have been proposed to incorporate spatial
information into the analysis of HSIs. In addition, some other
recent classification approaches have focused on the design of
effective feature extraction techniques (e.g., clonal selection
feature-selection [13], extended morphological profiles [14],
tensor discriminative locality alignment [15] and multiple fea-
tures combination [16], [17]).

Sparse representation [18] has been demonstrated to be a
very powerful tool for many computer vision tasks [19]–[26],
often leading to state-of-the-art performance. Recently, sparse
representation has been also applied in HSI classification [17],
[27]–[37], using the observation that hyperspectral pixels ap-
proximately lie in a low-dimensional subspace spanned by dic-
tionary atoms from the same class. Therefore, an unknown test
pixel (i.e., a pixel that is to be classified) can be sparsely repre-
sented by a linear combination of a few atoms from the entire
training dictionary. The corresponding sparse coefficients rep-
resent the positions of selected atoms and related weight values,
which can be used to determine the class label of the test pixel.
To further exploit the spatial contexts of the HSI, [27]–[29] de-
fine a fixed-size local region for each test pixel and then
sparsely represent neighboring pixels in such a region for clas-
sification of the test pixel. This region-based sparse representa-
tion technique can provide promising classification accuracies.
However, the spatial information of the HSI may not be suffi-
ciently utilized, if the shape and the size of the region are fixed.
That is, the shape of the regions should be varied according to
the different spatial structures in the HSI. In addition, to classify
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each pixel, many of its neighboring pixels within the local
region are required to be coded, which will create a significant
computational burden.

In this paper, a superpixel-based discriminative sparse model
(SBDSM) is proposed to effectively exploit the spatial informa-
tion of the HSI. Each superpixel in the HSI can be regarded as
a small spatial region whose shape and size can be adaptively
changed for different spatial structures [38]–[40]. The SBDSM
first employs an efficient oversegmentation approach [40] to
cluster the HSI into many superpixels. Then, pixels in each
superpixel are assumed to have very similar spectral charac-
teristics, and their correlations are exploited via a joint sparse
regularization [41]. Specifically, the joint sparse regularization
simultaneously represents the pixels within each superpixel
using linear combinations of a few common atoms from a
structured dictionary. Finally, instead of classifying each single
pixel, the recovered sparse coefficients can be jointly utilized
to determine the class label of the whole superpixel, and that
reduces the computational cost. Note that, in some very recent
works [42], [43], the HSI is also classified based on the super-
pixel. However, these works [42], [43] use histogram de-
scriptors or K-means clustering for the classification of each
superpixel and do not consider the correlation of pixels within
each superpixel. In contrast, the proposed SBDSM can effec-
tively capture the correlations of pixels in each superpixel by
utilizing the joint sparse model.

A fundamental consideration in employing the sparse rep-
resentation is the design of the structural dictionary [44]. In
[27]–[29], training samples that are directly extracted from the
HSI are used to form a dictionary. Usually, a dictionary con-
structed in the aforementioned way may not be robust enough
to represent each test pixel. Furthermore, such a dictionary is of
a huge size and its use in analysis creates a great computational
burden. Therefore, to make the dictionary compact, represen-
tative and discriminative, the SBDSM can apply the discrim-
inative K-SVD algorithm [45] to simultaneously learn one
dictionary and one classifier. However, the K-SVD [46] is
also known to be a very computationally intensive algorithm.
K-SVD consists of two iterative steps, i.e., sparse coding with
orthogonal matching pursuit (OMP) [47] and dictionary up-
dating with singular value decomposition (SVD). The main
computational cost is caused by the OMP algorithm [48], which
requires a search of all the dictionary atoms in every iteration
to pursue the sparse coefficients. In addition, the sparse coeffi-
cients obtained by the OMP algorithm lack the discriminability
for appropriate training of a simple linear classifier [49], [50].

To address the aforementioned issues, motivated by works in
[49] and [50], a class-labeled OMP algorithm is proposed here
by incorporating the class information of the training samples
and dictionary atoms into the original OMP algorithm. Since
each training sample is ideally represented by atoms from the
same class, the class-labeled OMP algorithm only searches
atoms associated with the class of the processed training sam-
ple, greatly reducing the computational cost of sparse coding.
Accordingly, the class-labeled OMP algorithm also forces train-
ing samples from a particular class to be represented by dictio-
nary atoms from the same class. That enables training samples
from the same class to have very similar sparse coefficients and,

thus, enhances their discriminability for training the classifier.
Note that, very recently, Wang et al. also introduced a dic-
tionary learning algorithm for HSI classification [35]. In [35],
Wang et al. learned the dictionary by utilizing a learning vector
quantization technique, instead of the discriminative K-SVD
framework. Thus, the learning method of Wang et al. is dif-
ferent from the proposed dictionary learning approach.

The main contributions of this paper can be summarized as
follows: 1) A superpixel-based sparse model that can adaptively
exploit the spatial contexts of a HSI is proposed; 2) a reduc-
tion in computational cost is obtained with a superpixel-based
classification strategy; and 3) a class-labeled OMP algorithm
is proposed for accelerating the dictionary learning process
while enforcing high discriminability on sparse coefficients for
training a classifier.

The rest of this paper is organized as follows. In
Section II, the sparse representation-based HSI classification
and the discriminative K-SVD dictionary learning algorithm are
briefly reviewed. Section III introduces the proposed SBDSM
framework for HSI classification. Experimental results on four
images are presented in Section IV. Section V concludes this
paper and suggests future research directions.

II. SPARSE REPRESENTATION-BASED HSI
CLASSIFICATION AND DISCRIMINATIVE K-SVD

DICTIONARY LEARNING ALGORITHM

A. Sparse Representation-Based HSI Classification

We denote one pixel of HSI as y ∈ R
S×1 with S indicating

the number of spectral bands and a structural dictionary as D =
[D1, . . . ,Dr, . . . ,DR] ∈ R

S×N , where Dr ∈ R
S×Nr , r = 1,

. . . , R, is the rth class subdictionary whose columns (atoms)
are directly drawn or trained from the training pixels, R is the
number of classes, Nr is the number of atoms in subdictionary
Dr and N =

∑R
r=1 Nr is the total number of atoms in D. The

sparse representation-based classification (SRC) technique was
first proposed in [19] for face recognition. In [27], Chen et al.
extended the SRC to HSI classification based on the observation
that the spectral pixels approximately lie in a low-dimensional
subspace spanned by atoms from the same class. Therefore, a
pixel ytest, whose class identity is unknown, can be represented
as a linear combination of atoms from all classes

ytest = Dαtest (1)

where αtest ∈ R
N is the sparse coefficient for the test spectral

pixel ytest. Given the structural dictionary D, the sparse co-
efficient αtest can be obtained by solving the following error
constrained problem:

α̂test = argmin
∥∥αtest

∥∥
0

subject to
∥∥ytest −Dαtest

∥∥
2

� σ
(2)

or the sparsity constrained problem

α̂test = argmin
∥∥ytest −Dαtest

∥∥
2

subject to
∥∥αtest

∥∥
0

� K
(3)

where ‖ · ‖0 and ‖ · ‖2 represent �0 and �2-norms, respec-
tively, σ is the error tolerance and K is the sparsity level,
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representing the number of selected atoms in the dictionary
(also corresponding to the nonzeros coefficients in α̂test). The
aforementioned problems are, in general, known to be non-
deterministic polynomial-time hard (NP-hard) [51]. However,
they can be approximately solved with OMP [47]. After the
sparse coefficient vector α̂test is obtained, we can determine
the class label rtest of the test pixel ytest basing on the minimal
representation error criteria

r̂test= argmin
r

∥∥ytest − ŷtest
r

∥∥
2

= argmin
r

∥∥ytest −DΦr

(
α̂test

)∥∥
2

(4)

where Φr(α̂
test) is an vector operator that preserves coeffi-

cients of α̂test corresponding to the class r and sets all other
coefficients to zero.

In order to further exploit the spatial context of the HSI, for
each test pixel ytest, [27]–[29] introduce a region-based SRC.
Specifically, for each test pixel, the region-based SRC defines
a local region of fixed size and shape. Then, pixels within the
region are sparsely represented, and the corresponding sparse
coefficients are used to determine the class label of the test pixel
ytest. Compared with the aforementioned pixelwise-based
SRC, the region-based SRC can provide a better classification
performance in terms of accuracies. However, the fixed-size
region may not effectively exploit the spatial information of the
HSI. For example, if the shape and size of the region are not
appropriately selected, many pixels in the region may be
uncorrelated to the test pixel, consequently deteriorating the
classification accuracy. In addition, to classify each pixel, its
multiple neighboring pixels within the local region should
be coded. That will create a high computational burden. To
address these issues, the proposed superpixel-based sparse
representation model is introduced in the following section.

B. Discriminative K-SVD Dictionary Learning Algorithm

The performance of the sparse representation relies heavily
on the quality of the dictionary D. In [27]–[29], the dictionary
is constructed by directly extracting pixels from the image of
interest. In this way, the dictionary usually requires a large
number of training pixels while still not possibly being robust to
represent each pixel to be classified. Recently, many dictionary
learning algorithms [44] have been proposed to achieve a
compact representation. One widely used dictionary learning
algorithm is the K-SVD [46] which aims to solve the following
optimization problem:

{D̂, Âtrain} = arg min
D̂,Âtrain

‖Ytrain −DAtrain‖2F ,

subject to ‖αtrain
z ‖0 � K, z = 1, . . . , Z (5)

where Ytrain is composed of the training samples [ytrain
1 ,

. . . ,ytrain
Z ], αtrain

z is the sparse coefficient for the training
sample ytrain

z , Atrain is the corresponding sparse coefficients
matrix [αtrain

1 , . . . ,αtrain
Z ], Z is the number of training sam-

ples, and ‖Ytrain −DAtrain‖2F is the Frobenius norm of
(Ytrain −DAtrain). The K-SVD splits the problem in (5) into
sparse coding and dictionary updating stages, which are solved

within an iterative loop. In the sparse coding, D is initially kept
fixed, and the sparse coefficients matrix Atrain is computed via
the OMP algorithm [47]. Then, given the sparse coefficients
matrix, Atrain, the K-SVD updates one atom at a time via
SVD [46]. The K-SVD improves the representative power of
the dictionary and has been demonstrated to work well in many
image restoration problems [46], [52], [53].

Recently, by utilizing the class information of training sam-
ples, a discriminative K-SVD dictionary learning algorithm was
proposed for classification [45]. Such an algorithm introduces
a classification error constraint ‖Htrain −WAtrain‖2F , where
Htrain = [htrain

1 , . . . ,htrain
Z ] ∈ R

R×Z is the class matrix of the
training samples Ytrain and W ∈ R

R×N is a classifier which
can obtain the class vector htrain

z of ytrain
z with the sparse coef-

ficient αtrain
z . Furthermore, htrain

z = [0, 0, . . . , 1, . . . , 0, 0]T ∈
R

R is a class vector corresponding to one training sample
ytrain
z and the nonzero position in htrain

z represents the class
label rtrainz of ytrain

z . Then, the classification error constraint
‖Htrain −WAtrain‖2F can be incorporated into (5) to jointly
learn the discriminative dictionary D and the classifier W [45]

{D̂, Âtrain,Ŵ} = arg min
D̂,Âtrain,Ŵ

‖Ytrain −DAtrain‖2F

+ λ1

∥∥H−WAtrain
∥∥2

F
,

subject to ‖αtrain
z ‖0 � K, z = 1, . . . , Z (6)

where λ1 is a scalar balancing the relative contribution of the
reconstruction and classification error constraints. As described
in [45], (6) can be rewritten as

{D̂, Âtrain,Ŵ}

= arg min
D̂,Âtrain,Ŵ

∥∥∥∥
(

Ytrain

√
λ1Htrain

)
−

(
D√
λ1W

)
Atrain

∥∥∥∥
2

2

subject to‖αtrain
z ‖0 � K, z = 1, . . . , Z. (7)

Let us now assume that Y∗ = (Ytrain/
√
λ1H

train) and
D∗ = (D/

√
λ1W). Then, (7) is equivalent to the following

optimization problem:

{D̂∗, Â
train} = arg min

D̂∗,Â
‖Y∗ −D∗A

train‖2F

subject to‖αtrain
z ‖0 � K, z = 1, . . . , Z (8)

which can be also solved by the K-SVD algorithm.

III. SBDSM FOR HSI CLASSIFICATION

A superpixel can be regarded as a small spatial region, whose
shape and size can be adaptively adjusted according to different
spatial structures. Instead of classifying each single pixel as
in [27]–[29], the proposed SBDSM algorithm is designed for
the classification of the superpixel in HSI with a discriminative
dictionary. Generally, the proposed SBDSM is composed of the
following four parts, which are further described in the follow-
ing sections: 1) superpixel map creation; 2) superpixel-based
sparse representation; c) discriminative dictionary learning; and
d) superpixel classification.
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Fig. 1. Procedure for the superpixel creation.

A. Superpixel Map Creation

The superpixel map is created by applying an efficient
oversegmentation approach [40] on the HSI. Then, the HSI can
be clustered into L nonoverlapping superpixels. To reduce the
computational cost, before the segmentation, principal compo-
nent analysis (PCA) [54] is applied on the original HSI. Since
the principal component corresponding to the highest eigen-
value (i.e., the first principal component) should contain the
most important information in terms of variation for the whole
HSI, it is used as the base image for the oversegmentation. The
procedure for creating the superpixel map is illustrated in Fig. 1.

B. Superpixel-Based Sparse Representation

When the superpixel map has been created, it can be utilized
with the original HSI to extract superpixels. Each superpixel
is composed of a number of spectral pixels [yi,1,yi,2, . . . ],
which can be arranged into a matrix YSP

i . Then, pixels within
each superpixel are assumed to have very similar spectral
characteristics and their correlations can be exploited by joint
sparse regularization [41]. Specifically, the joint regularization
requires that pixels within each superpixel YSP

i shall be simul-
taneously decomposed by linear combinations of a few com-
mon atoms from a dictionary. Let the sparse coefficients of the
YSP

i be a matrix ASP
i . The joint sparse regularization places a

�row,0-norm on the sparse matrix ASP
i , as ‖ASP

i ‖row,0. The
�row,0-norm denotes the sparse norm, which is used to se-
lect a number of the most representative nonzero rows in
ASP

i . We should note that the coefficient values in each row
vector may be varied to cover the slight differences in sim-
ilar pixels, as illustrated in Fig. 2(b). By incorporating the
joint sparse regularization into (3), the SBDSM pursues the
joint sparse matrix ASP

i by solving the following optimization
problem:

ÂSP
i =argmin

∥∥YSP
i −DASP

i

∥∥
2

subject to
∥∥ASP

i

∥∥
row,0

� K.
(9)

In this paper, a variant of the OMP algorithm, called the
simultaneous OMP (SOMP) [41], is used to efficiently solve the
aforementioned problem. A schematic of the superpixel-based
sparse representation is shown in Fig. 3.

Note that, enforcing the structured constraints (e.g., manifold
[55] and mixed l1,2-norm [56]) on (9) may produce a better
sparse coefficients matrix, but also create higher computa-
tional cost.

Fig. 2. Illustration of two different sparsity patterns in a sparse coefficients
matrix ASP

i . Each column represents one sparse coefficient vector and each
square block denotes a coefficient value. The white blocks denote zero val-
ues, whereas the color blocks represent nonzero values. (a) Separate sparsity
patterns in ASP

i . (b) Joint sparsity patterns in ASP
i with the joint sparse

regularization. The joint sparse regularization makes the nonzero coefficients
of the matrix ASP

i belong to the same row although their values may be varied.

C. Discriminative Dictionary Learning With Class-Labeled
OMP Algorithm

To achieve a discriminative representation, the learning algo-
rithm in (6) can be directly utilized to train one dictionary D,
as well as one classifier W. As previously described, (6) can
be optimized by the K-SVD, but with a significant computa-
tional burden. The main computational cost of the K-SVD
is caused by the OMP, which needs to search through all the dic-
tionary atoms in every iteration to pursue the sparse coefficients
[48]. In addition, the sparse coefficients obtained by the OMP
algorithm lack the discriminability for training a simple linear
classifier W [49], [50]. By utilizing the class information of the
training samples and dictionary atoms, Jiang et al. [49], [50]
proposed a novel discriminative sparse coefficients constraint
‖Q−PAtrain‖2F , where Q ∈ R

N×Z is the discriminative
sparse coefficients matrix with both training pixels and dictio-
nary atom labels, and P is a transformation matrix, which trans-
forms the original sparse coefficients Atrain to the discrimina-
tive counterparts Q. Such a constraint can then be incorporated
into (6) to ensure that training samples from the same class have
similar sparse coefficients, which produces a well-trained clas-
sifier. However, when Q is further concatenated with W and
D in a joint optimization process, the dimensionality will sig-
nificantly increase and, thus, a very high computational burden
is created.

To address the aforementioned issues, inspired by works in
[49], [50], a class-labeled OMP algorithm is proposed here
for solving (8) by incorporating the class information of the
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Fig. 3. Schematic of the superpixel-based sparse representation.

Fig. 4. Class-labeled OMP algorithm.

training samples and the dictionary atoms into the original
OMP algorithm. The class-labeled OMP is based on the as-
sumption that each training sample should be ideally repre-
sented by dictionary atoms from the same class. To pursue the
sparse coefficient for each training sample, the class-labeled
OMP only searches a small part of the atoms associated with
the same class in the training samples and thus greatly reduces
the computational cost. Accordingly, the training samples from
a particular class will be represented by atoms from the same
class and, therefore, their sparse coefficients are forced to be
similar. This way, the discriminability of the sparse coefficients
can be also enhanced to train the classifier in an appropriate
manner. The whole class-labeled OMP algorithm is detailed in
Fig. 4. After obtaining the sparse coefficients for the training
samples, the dictionary and the classifier can be updated by
SVD decomposition.

D. Classification With the Learned Dictionary and Classifier

After D and W are obtained by solving (6), they cannot be
directly used for classification, since they are jointly normalized
in D∗ in the aforementioned optimization algorithm. Following
[45], the desired dictionary D̂ and classifier Ŵ should be
computed as

D̂ =

{
d1

‖d1‖2
,

d2

‖d2‖2
, . . . ,

dN

‖dN‖2

}

Ŵ =

{
w1

‖w1‖2
,

w2

‖w2‖2
, . . . ,

wN

‖wN‖2

}
(10)

where dn and wn are the nth column of D and W, respectively.
For each superpixel YSP

i = [yi,1,yi,2, . . . ], the correspond-
ing joint sparse coefficient matrix ASP

i = [αi,1,αi,2, . . . ] is
first computed by addressing the problem in (9). Then, the
classifier Ŵ can be applied on ASP

i to create a class matrix
HSP

i = [hi,1,hi,2, . . . ] for each test superpixel

HSP
i = Ŵ ×ASP

i (11)

where hi,1 ∈ R
R is the class vector of the corresponding pixel

yi,1 in YSP
i ; and the position of the max value in hi,1 is the

class label of the yi,1, as described in [45]. Finally, each row of
the HSP

i is summed together as a new class vector hSP
i ∈

R
R, and the class label r̂SPi of each superpixel YSP

i can be
determined by the position of the max value in hSP

i

r̂SPi = argmax
r

(
hSP
i (r)

)
, r = 1, . . . , R. (12)

The whole SBDSM algorithm is summarized in Fig. 5.

IV. EXPERIMENTAL RESULTS

Here, the performance of the proposed algorithm is tested in
classification of four hyperspectral datasets,1 i.e., the AVIRIS
Indian Pines image, AVIRIS Salinas image, ROSIS-03 Uni-
versity of Pavia image, and HYDICE Washington DC image.
The proposed classification algorithm is split into four ver-
sions: SBDSM-NoDL, SBDSM-KSVD, SBDSM-Cseg, and
SBDSM. In the superpixel creation step, the SBDSM-NoDL,

1Datasets can be downloaded at: http://www.ehu.es/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes.
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Fig. 5. Summary of the SBDSM algorithm.

SBDSM-KSVD, and SBDSM methods utilize a recent overseg-
mentation algorithm [40], whereas the SBDSM-Cseg method
adopts a conventional oversegmentation algorithm [57]. To
train the discriminative dictionary, the SBDSM and SBDSM-
Cseg adopted the dictionary-learning method with the proposed
class-labeled OMP algorithm, whereas the SBDSM-KSVD uti-
lized the K-SVD learning method in [45]. By contrast, the
SBDSM-NoDL directly extracted pixels from HSI as the sparse
dictionary. In the sparse representation stage, the aforemen-
tioned four methods all solve the optimization problem in (9).
For the classification of each superpixel YSP

i , the SBDSM-
KSVD, SBDSM-Cseg, and SBDSM address the problems in
(11) and (12), whereas the SBDSM-NoDL solves the following
problem:

r̂SPi = argmin
r

∥∥∥YSP
i −DΦr

(
Âtest

i

)∥∥∥
2

(13)

where Φr(Â
test
i ) is a matrix operator that preserves coefficients

of Âtest
i , corresponding to the class r and sets all other coeffi-

cients to zero. In addition, the experiments included other seven
competitive algorithms for comparison: SVM [2], extended
morphological profile (EMP) [14], Logistic regression via split-
ting and augmented Lagrangian-multilevel logistic (LORSAL-
MLL) [58], Pixelwise SRC [27], Region-based SRC [27],
Pixel-LCKSVD [50], and Superpixel-SVM. The Superpixel-
SVM is a combination of the superpixel segmentation and
SVM classifier, which first uses the method in Section II-A to
create the superpixels and then applies the SVM to determine
the class label of each superpixel. Since the original SVM
can only classify each spectral pixel, majority voting is used
to fuse the SVM’s results within each superpixel. The SVM
classifier was implemented with the LIBSVM library [59]
and the spectral-only Gaussian kernel was adopted without
considering spatial information. For EMP and LORSAL-MLL,
the local spatial context of HSI was exploited by the use of
the extended morphological profile and the multilevel logistic
prior-based segmentation technique, respectively. The pixel-
wise SRC, region-based SRC, and Pixel-LCKSVD are three
sparsity-based classifiers that aim to classify one spectral pixel
at a time. The Pixelwise SRC and Pixel-LCKSVD only exploits

the spectral information, whereas the Region-based SRC uti-
lizes both the spectral information and the spatial context of the
fixed-size local region centered at each test pixel. The Pixel-
LCKSVD adopted the LCKSVD algorithm [50] for training of
the dictionary while the Pixelwise SRC and Region-based SRC
directly extracted pixels from HSI for the sparse dictionary.

A. Data Set Description

The Indian Pines image was captured by Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) over the agricultural
Indian Pines test site of northwestern Indiana. The image is
of size 145× 145× 220 with a spatial resolution of 20 m per
pixel and a spectral coverage ranging from 0.2 to 2.4 μm. In
the experiments, the number of spectral bands was reduced to
200 by removing 20 water absorption bands [60]. The image
contains 16 reference classes, most of which are different types
of crops (e.g., corns, soybeans, and wheat). Fig. 6(a) and (b)
show the color composite of the Indian Pines image and the
corresponding reference data.

The Salinas image, which captures the area of the Salinas
Valley, California, was also acquired by the AVIRIS sensor.
The image has a spatial resolution of 3.7 m per pixel and is of
size 512× 217× 224. As for the Indian Pines image, 20 water
absorption spectral bands are discarded and the reference image
contains 16 different classes. Fig. 7(a) and (b) show the color
composite of the Salinas image and the corresponding refer-
ence data.

The University of Pavia image was recorded by the Reflective
Optics System Imaging Spectrometer (ROSIS-03) sensor over
an urban area surrounding the University of Pavia, Italy. The
ROSIS-03 sensor in this case generated an image with a spatial
resolution of 1.3 m per pixel and a spectral coverage ranging
from 0.43 to 0.86 μm [61]. The University of Pavia image
consists of 610 × 340 pixels, each including 103 spectral bands
with the nosiest bands discarded. Nine reference classes are
considered for this image. Fig. 8(a) and (b) show the color com-
posite of the University of Pavia image and the corresponding
reference data.

The Washington DC image was captured by the
Hyperspectral Digital Image Collection Experiment (HYDICE)
sensor over the Washington DC Mall. The image is of size
280× 307× 210 with a spectral coverage ranging from 0.2
to 2.4 μm. In the experiments, the number of spectral bands
was reduced to 191 by removing bands ranging from 0.9 to
1.4 μm, since the atmosphere of these bands is opaque. The
reference of this image contains six classes. Fig. 9(a) and (b)
show the color composite of the Washington DC image and the
corresponding reference data.

B. Quantitative Metrics

The OA, average accuracy (AA), and Kappa coefficient are
adopted as the objective metrics to evaluate the classification
results. The OA is computed by the percentage of correctly clas-
sified test pixels. The AA is mean of the percentage of correctly
classified pixels for each class. The Kappa coefficient shows
the percentage of classified pixels corrected by the number of
agreements that would be expected purely by chance.
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Fig. 6. Indian Pines image. (a) Three-band color composite image. (b) Reference image, and the classification results (OA in percentage) obtained by the
(c) SVM [2], (d) EMP [14], (e) LORSAL-MLL [58], (f) Pixelwise SRC [27], (g) Region-based SRC [27], (h) Pixel-LCKSVD [50], (i) Superpixel-SVM,
(j) SBDSM-NoDL, (k) SBDSM-KSVD [45], (l) SBDSM-Cseg [57], and (m) SBDSM methods.

In addition, the F-Measure [62] is used as the quantitative
metric to evaluate the oversegmentation results for creating
the superpixel. The F-Measure is computed by 2RP/(R+ P ),
where R and P are recall and precision of the segmentation
result relative to the ground reference map, respectively. Specif-
ically, if ASR is the set of pixels from the segmentation result
and AGRis the set of pixels from the ground reference map,
R = |ASR ∩AGR|/AGR and P = |ASR ∩AGR|/ASR.

C. Comparison of Results

In the experiments, the parameters are empirically selected
for different versions of the proposed SBDSM algorithm, i.e.,
SBDSM-NoDL, SBDSM-KSVD, SBDSM-Cseg, and SBDSM.
For the four considered images, the sparsity level K in (9) is
chosen to be 3. The number of superpixels L is selected as
600, 300, 1000, 1300 for Indian Pines, Salinas, University of
Pavia, and Washington DC, respectively. The dictionary size
per class Nr is selected as 80% of the number of the training
samples in each class. In the following section, we will analyze
the effects of the sparsity level, the dictionary size per class, and
the number of superpixels on the performance of the proposed
SBDSM method. Parameters C and σfor the SVM are obtained
by fivefold cross validation. Specifically, parameter C was
determined as 100, 10, 100, 1000 for the Indian Pines, Salinas,
University of Pavia, and Washington DC images, respectively.
The σ of the Gaussian kernel in the SVM was determined
as 0.125, 0.25, 0.125, 0.125, on the Indian Pines, Salinas,
University of Pavia, and Washington DC images, respectively.
The parameters for the EMP and LORSAL-MLL are set to
the default values as in [14] and [58] and the parameters for

Pixelwise SRC and Region-based SRC are tuned to reach the
best results in these experiments. For the Superpixel-SVM, the
number of superpixels is set to be the same as in the proposed
SBDSM algorithm, whereas parameters C and σ for the SVM
classifier are set to be the same as for the SVM classifier.

The first experiment was conducted on the Indian Pines
image. For each class of this image, 10% of the labeled samples
were randomly selected as the training set and the remaining
90% used as test samples (see the third and fourth columns of
Table I). The classification maps obtained from various tech-
niques on the Indian Pines image are illustrated in Fig. 6. It can
be observed that the SVM, Pixelwise SRC, and Pixel-LCKSVD
that only consider the spectral information present a very noisy
estimation in their classification maps. By incorporating the lo-
cal spatial context of the HSI, the EMP, and Region-based SRC
yield a smoother visual effect. However, these two approaches
still fail to identify the pixels in the detailed and near-edge
regions. By contrast, the proposed SBDSM approaches, i.e.,
SBDSM-NoDL, SBDSM-KSVD, and SBDSM, can provide a
smooth appearance while still achieving higher classification
accuracies in the detailed regions. The quantitative results
for different methods are tabulated in Table II. Note that for
each method, ten experiments with different randomly sampled
training data were conducted and the mean and standard devi-
ation of the classification accuracies are reported. As can be
observed, the SBDSM-NoDL, SBDSM-KSVD, and SBDSM
approaches outperform other compared methods in terms of
the OA, AA, and the Kappa coefficient. In addition, it can be
seen that the SBDSM that constructs the dictionary with the
proposed discriminative learning algorithm performs better in
terms of accuracies than both the SBDSM-KSVD that trains
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Fig. 7. Salinas Image. (a) Three-band color composite image. (b) Reference image, and the classification results (OA in percentage) obtained by the (c) SVM [2],
(d) EMP [14], (e) LORSAL-MLL [58], (f) Pixelwise SRC [27], (g) Region-based SRC [27], (h) Pixel-LCKSVD [50], (i) Superpixel-SVM, (i) SBDSM-NoDL,
(k) SBDSM-KSVD [45], (l) SBDSM-Cseg [57], and (m) SBDSM methods.

the dictionary with the original K-SVD algorithm [45] and
the SBDSM-NoDL that constructs the dictionary with directly
extracted pixels. This demonstrates, that compared with the
K-SVD, the proposed learning algorithm can enable the dic-
tionary and the sparse coefficients to be more discriminable for
HSI classification.

The second and third experiments were performed on the
Salinas and University of Pavia images, respectively. In the
Salinas image, 1% of the labeled data were randomly chosen as
the training samples and the rest 99% of data as the test set (see
the sixth and seventh columns of Table I). As in some recent
papers [31], [63], [64], that classified the University of Pavia
image, we adopted a fixed number of training samples for
each class. Specifically, in the experiments performed here, we
randomly selected 250 spectral pixels from each class for train-

ing and used the remaining pixels as the test set (see the ninth
and tenth columns of Table I). The training samples constitute
only about 5% of the whole labeled data, which provides
a comparatively challenging test set. The classification maps
and quantitative results (mean and standard deviation over ten
experiments) from different methods on the Salinas and Univer-
sity of Pavia images are shown in Figs. 7 and 8, and Tables III
and IV. As shown from Fig. 7 and Table III, the proposed
SBDSM approach and two approaches based on it, i.e., the
SBDSM-KSVD and SBDSM-NoDL methods, perform better
than the other classifiers on the Salinas image in terms of the
visual quality of the classification map, as well as quantitative
metrics on the Salinas image. In addition, we can observe from
Fig. 8 and Table IV that the SBDSM-KSVD, SBDSM-NoDL,
EMP, and LORSAL-MLL methods are generally superior to the
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Fig. 8. Indian Pines image. (a) Three-band color composite image. (b) Reference image, and the classification results (OA in percentage) obtained by the
(c) SVM [2], (d) EMP [14], (e) LORSAL-MLL [58], (f) Pixelwise SRC [27], (g) Region-based SRC [27], (h) Pixel-LCKSVD [50], (i) Superpixel-SVM,
(i) SBDSM-NoDL, (k) SBDSM-KSVD [45], (l) SBDSM-Cseg [57], and (m) SBDSM methods.

SVM, Pixelwise SRC, Region-based SRC, and the Superpixel-
SVM classifiers on the University of Pavia image. Moreover,
utilizing both the superpixel-based sparse representation and
the discriminative learning algorithm, the proposed SBDSM al-
gorithm delivers higher classification accuracies compared with
the SBDSM-KSVD, SBDSM-NoDL, EMP, and LORSAL-
MLL methods on the University of Pavia image.

The fourth experiment was conducted on the Washington
DC image. For this image, about 4% of the labeled data were
randomly chosen for training, and the other 96% were used
as a test set (see the 12th and 13th columns of Table I). The
qualitative and quantitative results (mean and standard devia-
tion over ten experiments) from different methods in applied on
the Washington DC images are shown in Fig. 9 and Table V. As
can be observed, the proposed SBDSM method can generally
deliver better results than the other compared methods, in
terms of visual quality and quantitative metrics. In addition, the
SBDSM-Cseg with the conventional oversegmentation algo-
rithm [57] does not provide very good results because the
conventional oversegmentation method used in SBDSM-Cseg
cannot create a very accurate superpixel map. Furthermore,
unlike the aforementioned three test images, the superiority
of the proposed superpixel-based SBDSM method over the

Pixelwise-SRC and Pixel-LCKSVD methods on the Washing-
ton DC image is not very significant. This is mainly due to
the reason that the Washington DC image has many detailed
regions; therefore, there may not be enough spatial information
to be exploited for enhancing the performance, as compared
with the aforementioned three images.

D. Running Time Comparison

The average running times (over ten realizations) of the
proposed SBDSM method and other compared methods for
classifying the four-test HSI images are reported on Table VI.
The execution time for the proposed SBDSM method reported
in Table VI includes the time consumed in the superpixel map
creation, dictionary learning, and sparse classification stages.
All the programs are executed on a laptop computer with an
Intel Corei7-3720 CPU 2.60 GHz and 16 GB of RAM. As
can be observed, the SBDSM-NoDL, SBDSM-KSVD, and
SBDSM algorithms require much less running time compared
with other methods. This demonstrates the high efficiency of
the superpixel-based sparse classification strategy. It should be
noted that, since the conventional segmentation algorithm in
[57] is computationally very costly, the SBDSM-Cseg method
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Fig. 9. Washington DC image. (a) Three-band color composite image. (b) Reference image, and the classification results [overall accuracy (OA) in percentage]
obtained by the (c) SVM [2], (d) EMP [14], (e) LORSAL-MLL [58], (f) Pixelwise SRC [27], (g) Region-based SRC [27], (h) Pixel-LCKSVD [50], (i) Superpixel-
SVM, (i) SBDSM-NoDL, (k) SBDSM-KSVD [45], (l) SBDSM-Cseg [57], and (m) SBDSM methods.

TABLE I
REFERENCE CLASSES FOR THE INDIAN PINES IMAGE, SALINAS IMAGE, UNIVERSITY OF PAVIA IMAGE, AND WASHINGTON DC IMAGE

runs much slower than the SBDSM-NoDL, SBDSM-KSVD,
and SBDSM approaches. By utilizing the discriminative dictio-
nary learning, the SBDSM-KSVD and SBDSM are faster than
the SBDSM-NoDL. This is due to the compact dictionary D
for the sparse representation and efficient classifier W for the
classification process. In addition, the SBDSM can provide a
shorter running time than the SBDSM-KSVD, which demon-
strates the efficiency of the proposed class-labeled OMP algo-
rithm. Furthermore, we should note that the dictionary learning
and sparse classification parts of the proposed SBDSM algo-

rithm were coded in MATLAB, which was not optimized for
speed. The processing time is expected to be further reduced by
coding the SBDSM algorithm with C++ and adopting a general
purpose graphics processing unit.

E. Effect of the Sparsity Level, Dictionary Size, and
Number of Superpixels

Here, we examine the effect of the sparsity level K, sub-
dictionary size per class Nr and the number of superpixels L
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TABLE II
CLASSIFICATION ACCURACIES OF THE INDIAN PINES IMAGE OBTAINED BY THE SVM [2], EMP [14], LORSAL-MLL [58], PIXELWISE SRC [27],

REGION-BASED SRC [27], PIXEL-LCKSVD [50], SUPERPIXEL-SVM, SBDSM-NoDL, SBDSM-KSVD [45], SBDSM-Cseg [57], AND

SBDSM METHODS. CLASS-SPECIFIC ACCURACIES ARE IN PERCENTAGE

TABLE III
CLASSIFICATION ACCURACIES OF THE SALINAS IMAGE OBTAINED BY THE SVM [2], EMP [14], LORSAL-MLL [58], PIXELWISE SRC [27],

REGION-BASED SRC [27], PIXEL-LCKSVD [50], SUPERPIXEL-SVM, SBDSM-NoDL, SBDSM-KSVD [45], SBDSM-Cseg [57],
AND SBDSM METHODS. CLASS-SPECIFIC ACCURACIES ARE IN PERCENTAGE

on the performance of the proposed SBDSM method. In this
analysis experiments, the number of selected training and test
samples for the Indian Pines, Salinas, University of Pavia,
and Washington DC images are set to the same as that in
the aforementioned comparison experiments. The experiments
for the proposed algorithm are repeated over ten times with
different randomly selected samples to reduce the bias induced
by random sampling.

The sparsity level, i.e., K, was varied from 1 to 20. Fig. 10
shows the overall accuracies of the proposed SBDSM method
under different sparsity levels for the four-test HSI images. We
can observe that the overall accuracies of the SBDSM method
clearly increase for all the images, as the sparsity level rises
from 1 to 3. By further increasing the sparsity level from 4 to 8,
the overall accuracies of the SBDSM either demonstrate a
slight increase or become comparatively stable. Since larger
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TABLE IV
CLASSIFICATION ACCURACIES OF THE UNIVERSITY OF PAVIA IMAGE OBTAINED BY THE SVM [2], EMP [14], LORSAL-MLL [58],

PIXELWISE SRC [27], REGION-BASED SRC [27], PIXEL-LCKSVD [50], SUPERPIXEL-SVM, SBDSM-NoDL, SBDSM-KSVD [45],
SBDSM-Cseg [57], AND SBDSM METHODS. CLASS-SPECIFIC ACCURACIES ARE IN PERCENTAGE

TABLE V
CLASSIFICATION OF THE WASHINGTON DC IMAGE OBTAINED BY THE SVM [2], EMP [14], LORSAL-MLL [58], PIXELWISE SRC [27],

REGION-BASED SRC [27], PIXEL-LCKSVD [50], SUPERPIXEL-SVM, SBDSM-NoDL, SBDSM-KSVD [45], SBDSM-Cseg [57],
AND SBDSM METHODS. CLASS-SPECIFIC ACCURACIES ARE IN PERCENTAGE

TABLE VI
AVERAGE RUN TIME (SECONDS) OVER TEN REALIZATIONS FOR THE CLASSIFICATION OF THE FOUR-TEST HSI IMAGES BY THE SVM [2],

EMP [14], LORSAL-MLL [58], PIXELWISE SRC [27], REGION-BASED SRC [27], PIXEL-LCKSVD [50], SUPERPIXEL-SVM,
SBDSM-NODL, SBDSM-KSVD [45], SBDSM-CSEG [57], AND SBDSM METHODS

sparsity levels will create more computational cost in the SOMP
algorithm [41], the sparsity level K is selected as 3 in the afore-
mentioned experiments. In addition, when the sparsity level
further increases from 9 to 20, the performance of the SBDSM
method generally degrades for the Indian Pines, Salinas, and
Washington DC images, whereas its performance for the Uni-
versity of Pavia image remains stable. That is because the
selection of the sparsity level should be related to the number
of dictionary atoms in each class. For the Indian Pines image,
since the number of dictionary atoms for some classes is very
small, larger sparsity levels will enable the SBDSM algorithm

to select more atoms from other incorrect classes, consequently
deteriorating the classification accuracy. In contrast, for the
University of Pavia image, the number of dictionary atoms
within each class is large (e.g., 250), and thus, the performance
of the SBDSM exhibits little variations for sparsity levels
ranging from 1 to 20.

The subdictionary size per class Nr, varied from 10% to
100% of the number of training samples in each class. Fig. 11
shows the overall accuracies of the proposed SBDSM method
under different subdictionary sizes on the four HSI images. As
can be observed, the performances of the proposed SBDSM
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Fig. 10. Effect of the sparsity level on the proposed SBDSM algorithm for the
four HSI images.

Fig. 11. Effect of the dictionary size on the proposed SBDSM algorithm for
the four HSI images.

Fig. 12. Effect of the number of superpixels L on the segmentation results
(F measure) on the four HSI images.

method are comparatively stable when the dictionary size goes
from 80% to 100% of the number of the training samples.
Therefore, 80% of the number of the training samples is chosen
as the dictionary size used in our experiments. Furthermore, as
the dictionary size decreases from 70% to 40% of the number
of the training samples, the overall accuracies of the proposed
SBDSM method slightly decreases. It should be also noted that
when the dictionary size reaches about 20% of the number of
the training samples, the overall accuracies of the proposed
SBDSM method for all the test images are higher than 87%.

The number of superpixels L was varied within the range
[100, . . . , 1500]. First, the F-measure was adopted to examine
the performance of the oversegmentation method [40] in order
to create the superpixel map for different numbers of superpix-
els, as shown in Fig. 12. As the number of superpixels initially

Fig. 13. Effect of the number of superpixels L on the proposed SBDSM
algorithm on the four HSI images.

increases, i.e., for relatively few superpixels, the segmentation
accuracies (F-measures) for the four images generally increase.
Then, from the figure, it can be seen that optimal segmentation
accuracies will be approximately obtained, when the number of
superpixel reaches 300, 600, 1000, 1300 for the Salinas, Indian
Pines, University of Pavia, Washington DC, respectively. As
can be seen, although the Salinas image is large, it requires
a smaller number (300) of superpixels, as compared with num-
bers needed for the other three images. That is because large ho-
mogenous regions do exist in the Salinas image. Therefore, that
image can be easily segmented. In addition, the corresponding
classification results (OA) of the proposed SBDSM for a differ-
ent number of superpixels are also illustrated in the Fig. 13. We
can see that the performance of the proposed SBDSM method
improves as the superpixel number L increases from 100 to
600 for the Indian Pines image, 100 to 300 for the Salinas
image, 100 to 1000 for the University of Pavia image and 100 to
1300 for the Washington DC image. This trend in the classifi-
cation accuracies generally corresponds to that on the segmen-
tation results. However, as the number of superpixels further
increases, the performance of the proposed SBDSM method
degrades for the Salinas image. The reason is that if the number
of superpixels L is too large, the size of each superpixel will be-
come very small, and thus, the spatial information for large ho-
mogenous regions in the Salinas image will not be sufficiently
exploited in classification.

F. Classification Results With Different Number of
Training Samples

Here, it is examined how the number of training samples
affects the performance for various sparse representation-based
algorithms on the Indian Pines, Salinas, University of Pavia,
and Washington DC images. The parameters for all the algo-
rithms are fixed to be the same as that in the aforementioned
comparison experiments. For each class in the Indian Pines,
Salinas, and Washington DC images, labeled samples were
randomly selected in varied percentages (from 2.5% to 50% for
Indian Pines, from 0.25% to 5% for Salinas, and from 1% to
10%) as the training samples, and the remaining samples for the
test. For the University of Pavia image, a balanced training set
was constructed by randomly choosing from 100 to 500 pixels
for each class.
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Fig. 14. Effect of the number of training samples on Pixelwise SRC, Region-based SRC, SBDSM-NoDL, and SBDSM for the (a) Indian Pines Image,
(b) Salinas Image, (c) University of Pavia Image, and (d) Washington DC Image.

The classification accuracies (OA), which are averaged over
five runs for each classification approach at each different
number of training samples are shown in Fig. 14. As can be ob-
served, in most of the cases, the accuracies for all the classifier
monotonically increase as the number of training samples
increase. In addition, it can be seen that the SBDSM classi-
fier generally outperforms all other sparse representation-based
classifiers in terms of accuracies, particularly when a limited
number of training samples is available.

V. CONCLUSION

In this paper, a novel SBDSM has been proposed for HSI
classification. The proposed SBDSM can classify one super-
pixel at a time and, thus, is more efficient than other sparsity-
based approaches for HSI classification. In addition, the size
and shape of each superpixel can be adaptively changed accord-
ing to the spatial structures of the HIS, and therefore, the spatial
contexts can be effectively exploited. Furthermore, by utiliz-
ing the class label information for both training samples and
dictionary atoms, a class-labeled OMP algorithm for the dis-
criminative K-SVD learning algorithm is proposed, which can
efficiently train both a discriminative dictionary and a classi-
fier. The results of the experiments in this paper demonstrate
that the proposed SBDSM algorithm outperforms several well-
known classification approaches in terms of both classification
accuracies and computational speed.

In the experiments, the number of superpixels was selected
empirically for different images. Therefore, one of our ongoing
research directions is to establish a more systematic way of
adaptively selecting the number of superpixels for different
conditions. In addition, there is a strong incentive to apply the
superpixel-based sparse representation model to other remote
sensing applications (e.g., denoising, change detection, and
object recognition).
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