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Highlights

• This review provides a survey of various pixel-level image fusion methods according to the adopted

transform strategy.

• The existing fusion performance evaluation methods and the unresolved problems are concluded.

• The major challenges met in different image fusion applications are analyzed and concluded.
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Abstract

Pixel-level image fusion is designed to combine multiple input images into a fused image, which is

expected to be more informative for human or machine perception as compared to any of the input

images. Due to this advantage, pixel-level image fusion has shown notable achievements in remote

sensing, medical imaging, and night vision applications. In this paper, we first provide a comprehensive

survey of the state of the art pixel-level image fusion methods. Then, the existing fusion quality

measures are summarized. Next, four major applications, i.e., remote sensing, medical diagnosis,

surveillance, photography, and challenges in pixel-level image fusion applications are analyzed. At

last, this review concludes that although various image fusion methods have been proposed, there still

exist several future directions in different image fusion applications. Therefore, the researches in the

image fusion field are still expected to significantly grow in the coming years.

Keywords: Image fusion, Multiscale decomposition, Sparse representation, Remote sensing, Medical

imaging

1. Introduction

Image fusion can be performed at three different levels, i.e., pixel level, feature level, and decision

level. Compared with others, pixel-level image fusion directly combines the original information in the

source images, which aims at synthesizing a fused image that is more informative for visual perception

and computer processing. Many applications that require analysis of two or more images of a scene5

have been benefited from image fusion. For instance, in remote sensing applications, the synthesis

of a low resolution multispectral (MS) image and a high resolution panchromatic (PAN) image is

used to obtain a fused image containing the spectral content of the MS image with enhanced spatial

resolution. In medical imaging applications, images from multiple modalities can be fused together for

a more reliable and accurate medical diagnosis. In surveillance applications, image fusion can fuse the10

information across the electromagnetic spectrum, (e.g., visible and infrared band) for night vision.
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Figure 1: The number of scientific journal articles with topic of image fusion. (Statistics with Web of Science [1]).

In response to the requirements in real applications, the researchers have been very active in

proposing more effective image fusion methods. As shown in Fig. 1, the number of scientific papers

published in the international journals increases dramatically since 2010, and reaches to the peak 320

at 2014. This fast growing trend can be attributed to three major factors: 1) The increased demand on15

developing low cost and high performance imaging techniques. The design of sensors with better quality

or some specific characteristics may be limited by technical constraints, and image fusion has become

a powerful solution to this problem by combining the images captured with different sensors or camera

settings. 2) The development of signal processing and analysis theory. For instance, in recent years,

many powerful signal processing tools such as sparse representation [2, 3] and multi-scale decomposition20

[4] have been proposed, which bring opportunities to further improve the performance of image fusion.

3) The growing amount and diversity of obtained complementary images in different applications. For

example, in remote sensing application, an increasing number of satellites are acquiring remote sensing

images of the observed scene with different spatial, spectral, and temporal resolutions. This situation is

similar in other applications such as medical imaging. For the full exploitation of these complementary25

images, a lot of image fusion algorithms have been developed.

For survey of early proposed image fusion methods, Zhang and Blum give a categorization of the

multi-scale decomposition based image fusion methods in [5]. Another excellent source that follows the

development of image fusion methods is the special issue published on the Information Fusion journal

organized by Goshtasby and Nikolov [6]. Furthermore, the surveys of the image fusion methods30

in some specific application fields also have been published in recent years [7, 8]. For example, in

remote sensing, the early proposed remote sensing image fusion methods are reviewed in [7]. A critical

comparison among the recently proposed remote sensing image fusion algorithms can be found in [8].

Jixiang Zhang reviews current techniques of multi-source remote sensing data fusion (including pixel,

feature, and decision level fusion) and discusses their future trends and challenges [9]. In the medical35
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imaging field, James and Dasarathy summarize the state-of-the-art image fusion methods in [10].

Different from these previous surveys, the objective of this paper is to cover relevant fusion approaches

and applications introduced recently and in this way give new insights to the current development of

image fusion theory and applications. Classical image fusion methods published early that introduced

key ideas are still included to give complete view of image fusion research. However, the details of40

particular algorithms or results of comparative experiments will not be described. More efforts will be

spent on summarizing main approaches and pointing out the interesting ideas of the existing image

fusion methods and applications.

In Section 2, we will provide a taxonomical view of the field into four main families of pixel-wise

image fusion methods. Section 3 reviews the existing algorithms for measuring the fusion performance.45

Section 4 investigates the main challenges and problems in different applications. Finally, the major

comments and the future directions on image fusion methods are concluded and discussed.

2. Pixel-level image fusion methods

Pixel-level image fusion, as mentioned above, is widely used in remote sensing[8], medical imaging[10],

and computer vision [6]. Although it is impossible to design an universal method applicable to all im-50

age fusion tasks due to the diversity of images to be fused, the majority of the image fusion methods

can be summarized by the three main stages shown in Fig. 2, i.e., image transform, fusion of the

transform coefficients, and inverse transform. Based on the adopted transform strategy, the existing

image fusion methods can be categorized into four major families: 1) the multi-scale decomposition

based methods; 2) the sparse representation based methods; 3) the methods which perform the fusion55

directly to the image pixels or in other transform domains such as the principal component space or

the intensity-hue-saturation color space. 4) the methods combining multi-scale decomposition, sparse

representation, principal component analysis, and other transforms. In addition to the signal trans-

form scheme, the other key factor affecting fusion results is the fusion strategy. The fusion strategy

is the process that determines the formation of the fused image from the coefficients or pixels of the60

source images. Table 1 shows the summary of the major pixel-level image fusion methods, the adopted

transforms and fusion strategies.

2.1. Multi-scale decomposition based methods

Multi-scale transform is a recognized tool that has been demonstrated to be very useful for image

fusion and other image processing applications. Fig. 3 illustrates the schematic diagram of a generic65

multi-scale decomposition based image fusion scheme. First, multi-scale transform is used to obtain

the multi-scale representations of the input images, in which the image features are represented in a

joint space-frequency domain. Then, a fused multi-scale representation is obtained by fusion of the

multi-scale representations of different images according to a specific fusion rule, in which the activity
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Figure 2: The summary of the main stages for a generic pixel-level image fusion method.

Table 1: Major pixel-level image fusion methods, the adopted transforms and fusion strategies.

Methods Transforms Fusion strategies

Multi-scale de-

composition

pyramid[4], wavelet [5, 11, 12], complex wavelet

[13], curvelet[14, 15], contourlet [16–23], shear-

let [24–26], edge-preserving decompositions[27–

29], anisotropic heat diffusion[30], log-Gabor

transform[31], support value transform [32, 33], op-

timal scale transform [34, 35]

coefficient [4, 17], window[18], and region[13] based

activity level measurement, choose-max[28], op-

timization based method[36], weighted-average[4,

37, 38], and substitution[12, 15] based coeffi-

cients combining, window and region based consis-

tency verification[5, 39], cross-scale fusion rule [40],

guided filtering based weighted average [41]

Sparse represen-

tation (SR)

orthogonal matching pursuit[42, 43], group SR [44],

gradient constrained SR [45], simultaneous OMP

(SOMP) [46], joint sparsity model [47–49], SR with

over-complete dictionary [50–53], structural sub-

dictionary [54], spectral and spatial details dictio-

nary [55]

window based activity level measurement[42, 46],

choose-max [42, 46, 51] and weighted average [54]

based coefficients combining, substitution of sparse

coefficients [52, 56], spatial context based weighted

average[57]

Methods in

other domains

spatial domain (non transforms) [58–73], intensity-

hue-saturation transform (IHS) [74–77], principal

component analysis (PCA) [78], Gram-Schmidt

(GS) transform[79], matting decomposition[80], in-

dependent component analysis (ICA) [81], gradient

domain[82], and fuzzy theory [83]

machine learning based weighted average[59, 60,

72], block [61–63] and region [64, 65] based activity

level measurement, spatial context based weighted

average [66–71], model based method[73], compo-

nent substitution [74–80]

Combination of

different trans-

forms

hybird wavelet-contourlet [84], multi-scale

transform-SR[85], morphological component

analysis-SR[86], contourlet-SR[87], IHS-retina-

inspired models [88], IHS-wavelet[89]

coefficient and window based activity level

measurement[85–87], choose-max and weighted-

average based coefficient combining method[85–87],

component substitution[89], integration of compo-

nent substitution and weighted average [88]

level of coefficients, and the correlations among adjacent pixels and coefficients of different scales may70

be considered. Finally, the fused image is obtained by taking an inverse multi-scale transform on the

fused representation. This image fusion framework involves two basic problems, i.e., the choice of the

multi-scale decomposition method, and the adopted fusion strategy used for the fusion of the multi-

scale representations. Recently, many works attempt to solve these two problems, which are detailed

as follows.75

1) Multi-scale decomposition methods

In previous research, the most commonly used multi-scale decomposition methods for image fusion

are the pyramid and wavelet transforms, such as the Laplacian pyramid[4], discrete wavelet decompo-

sition (DWT)[5, 36], and stationary wavelet decomposition[12]. Pajares and Cruz [11] give a tutorial80
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Figure 3: The main stages for a generic multi-scale based image fusion method.

of the wavelet-based image fusion methods, in which they present a comprehensive comparison of

different pyramid merging methods, different resolution levels, and different wavelet families. Zhang

and Blum give a categorization of the early proposed multi-scale decomposition based image fusion

methods [5] including most of the pyramid based methods and the classical wavelet based methods.

Besides the pyramid and wavelet transform, in recent years, some new multi-scale transforms such85

as dual-tree complex wavelet[13], curvelet[15], contourlet[17, 18], and shearlet [25, 26] are introduced

for image fusion. In the following, these newly introduced multi-scale decomposition methods will be

briefly reviewed.

It is known that the discrete wavelet transform suffers from some fundamental shortcomings, e.g.,

shift variance, aliasing, and lack of directionality[5]. As a solution to these problems, the dual-tree90

complex wavelet transform is successfully applied for image fusion[13]. The key advantages of the

dual-tree complex wavelet over the DWT are its shift invariance and directional selectivity, and thus

can reduce the artifacts introduced by DWT. However, a common limitation of the methods in the

wavelets family is that they cannot well represent the curves and edges of images. To represent the

spatial structures in the images more accurately, some novel multi-scale geometric analysis tools are95

introduced into image fusion. For example, Candeś and Donoho propose the curvelet bases to represent

the images [14]. Nencini successfully applies the curvelt transform for the fusion of remote sensing

images [15]. In addition to curvelet, contourlet is another transform that can capture the intrinsic

geometrical structure of the images, and it is preferable for processing two-dimensional signals[16].

In the contourlet transform, the Laplacian pyramid is first used to capture the point discontinuities,100

and then a directional filter bank is used to link point discontinuities into linear structures. Due to

its effectiveness in representing spatial structures, contourlet transform has been successfully applied

in medical imaging [19], surveillance [20, 21], and remote sensing[22, 23] applications. However, since

contourlet contains downsampling processes in the transform process, it has no shift-invariant property.
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The nonsubsampled version of the contourlet is a possible solution to this problem, while it will be more105

time consuming. Furthermore, the directional filter bank used in the contourlet is fixed, which means

that it cannot well represent complex spatial structures with many different directions [23]. Recently,

the shearlet also has been successfully applied for image fusion[25]. Compared to the contourlet,

the implementation of shearlet is more computationally efficient, and there are no restrictions on the

number of directions for the shearing, as well as the size of the supports[24].110

In recent years, edge-preserving filtering also has been successfully applied to construct multi-scale

representations of images. For example, Farbman et al. construct edge-preserving multi-scale image

decompositions with weighted least squares filter for fusion of multi-exposure images[27]. Hu et al.

combine bilateral and directional filters to construct the multi-scale representations for medical and

multi-focus image fusion[28]. Zhou et al. combine Gaussian and bilateral filters together for the115

fusion of infrared and visible images[29]. Li et al. introduce a guided filtering based image fusion

method which achieves state-of-the-art performance in several image fusion applications[41]. Besides

edge-preserving filtering, other powerful computer vision tools such as anisotropic heat diffusion[30],

log-Gabor transform[31], and support value transform [32, 33] also have been successfully applied for

multi-scale decomposition based fusion. Generally, the major advantage of these kinds of methods is120

their ability to accurately separate fine-scale texture details, middle-scale edges, and large-scale spatial

structures of an image. This property helps to reduce halo and aliasing artifacts in the fusion process,

and thus, is able to achieve fusion results good for human visual perception.

At last, besides the determination of the multi-scale decomposition method, the number of decom-

position levels also influences the quality of the fused images dramatically. If fewer decomposition125

levels are applied, the spatial quality of the fused images may be less satisfactory. If excessive levels

are applied, the performance and computing efficiency of the method also may decrease. Thus, some

researchers attempt to determine the optimal number of decomposition levels which yields the optimal

fusion quality. For example, Li et al. investigate the effect of decomposition levels to different filters

used for different image fusion applications in [34]. Pradhan et al. estimate the optimal number of130

decomposition levels for fusion of multi-spectral and panchromatic images with a particular resolution

ratio[35].

2) Strategies used for fusion of multi-scale representations

In order to enhance the fusion quality, another direction can be explored in muti-scale decompo-

sition based fusion: using effective fusion strategies. In [5], Zhang and Blum review some classical135

fusion schemes, e.g., coefficient, window, and region based activity level measurement, choose-max

and weighted-average based coefficient combining method, window and region based consistency ver-

ification, etc. In recent years, some novel fusion schemes have been designed to achieve better fusion

results. For example, Ben Hamza et al. formulate the image fusion as an optimization problem and
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propose an information theoretic approach in a multiscale framework to obtain the fusion results[36].140

In [37], the base components are fused using the principal component analysis based method. For

the detail coefficients (the other three quarters of the wavelet coefficients) at each transform scale,

a choose-max scheme is used and followed by a neighborhood morphological processing step, which

can increase the consistency of coefficient selection thereby reducing the distortion in the fused im-

age. Jiang et al. propose a novel weighted average method to fuse the multi-scale decompositions, in145

which the weight parameters in different scales are determined by combing global and local weighting,

making the method insensitive to noise and able to well preserve image details[38]. Gemma Piella

first make a multi-resolution segmentation based on the input images and then use the segmenta-

tion to guide the fusion process [39]. Recently, Shen et al. propose a novel cross-scale fusion rule

for multiscale-decomposition-based fusion of medical images taking into account both intrascale and150

interscale consistencies. Moreover, the weights of different scales are optimized by using a generalized

random walkers method which can effective exploit the spatial correlation among adjacent pixels[40].

Instead of using a global optimization method, Li et al. propose a guided filtering based weighted

average method to fuse the multi-scale decompositions of the input images[41].

In conclusion, most of the researches in this field focus on developing novel methods for multi-155

scale decomposition, and this direction is still very hot now. Compared with the development of the

decomposition methods, the fusion rules have not got enough attention in the early years. However, in

recent years, researchers find that advanced fusion rules can address many limitations of the multi-scale

transforms, and thus, providing state-of-the-art fusion performances [40, 41]. Although the traditional

fusion rules are usually quite simple, such as the widely used choose-max and averaging schemes, these160

rules may introduce visual artifacts when the images are not perfectly registered or contain noise.

Through making full use of the strong correlation among adjacent pixels and the dependency among

the coefficients of different scales, these problems actually can be effectively addressed now.

2.2. Sparse representation based methods

By simulating the sparse coding mechanism of human vision systems, sparse representation[2] is165

a novel image representation theory, which has been successfully applied to many image processing

problems, such as denoising, interpolation, and recognition[3]. The sparse representation can describe

the images (or image patches) by a sparse linear combination of atoms selected from the over-complete

dictionary. The obtained weighted coefficients are sparse, which means that only very few non-zero

elements exist in the sparse coefficients to efficiently represent the saliency information of the original170

images. By exploiting the characteristics of the sparse coefficients, Yang and Li [42] first apply the

sparse representation theory to image fusion. Specifically, to capture local salient features and keep

shift invariance, the input images from multiple sources are firstly partitioned into many overlapped

patches. Then, patches from multiple images are decomposed on the same over-complete dictionary to

obtain the corresponding sparse coefficients. After that, a fusion process (e.g., choose-max) is applied175
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on the coefficients from multiple sources. Finally, the image is reconstructed using the fused coefficients

and dictionary. The outline of the sparsity based image fusion framework is illustrated in Fig. 4. In

general, the sparsity based fusion framework has two key problems: 1) sparse coding to obtain the

coefficients. 2) dictionary construction. Recently, many works attempt to solve these two problems,

which are detailed as follows.180

1) Sparse coding to obtain the coefficients

To obtain the sparse coefficients, in [42], Yang and Li apply the orthogonal matching pursuit (OMP)

[43] algorithm to image patches of multiple sources. The nonzero coefficients obtained by the OMP

algorithm distribute randomly. Recent studies show that the distribution of non-zero elements may

exhibit some special structures. In [44], Li et al. incorporate a group sparse constraint to ensure185

that the obtained sparse coefficients have group sparsity. In [45], Chen et al. add a gradient sparsity

constraint into the sparse solution, which enables sparse coefficients to more accurately reflect the

sharp edges. Since images of multiple sources are acquired from the same scene, strong correlations

are existed in these images. To exploit the correlations, Yang and Li [46] utilize the simultaneous OMP

(SOMP) to jointly decompose the patches from multiple sources on the same dictionary, which can190

make the non-zero coefficients of different sources occur at the same locations. In addition, works in

[47–49] design a joint sparsity model to describe image patches of different sources as a combination

of common sparse coefficients and innovation coefficients.

2) Dictionary construction

The building of the dictionary generally has two ways: 1) based on mathematical models (e.g.,195

discrete cosine transform, wavelet and curvelets). 2) based on example learning (e.g., K-SVD and

method of optimal direction)[3]. The original sparsity based fusion work [42] adopts one class of

mathematical functions to construct the dictionary. Since each mathematical model is only designed

for one specific structure, such a dictionary has poor representation ability for the nature images. Work

in [46] utilizes multiple kinds of mathematical models to construct a hybrid dictionary. The hybrid200

Figure 4: The main stages for a generic sparsity based image fusion method.
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dictionary can well reflect several specific structures, but still lack the adaptability for representing

different types of image. In [50–53], an over-complete dictionary is learned from a large set of training

samples similar to the input images, thus adding adaptability for the representation. However, only

one general dictionary cannot accurately reflect the complex structures in the input image. Therefore,

in [54], Kim et al. first cluster training samples into many structural groups and then train one specific205

sub-dictionary on each group. In this way, each sub-dictionary can best fit a particular structure and

the whole dictionary has stronger representation ability. Similarly, Wang et al. separately construct

the spectral dictionary and spatial details dictionary for fusion of multi-spectral and panchromatic

images[55].

In sparse representation based image fusion, novel sparse coding and dictionary learning schemes210

have been researched in recent years. However, most of these methods are designed based on traditional

fusion strategies, such as window based activity level measurement[42, 46], choose-max and weighted

average based coefficients combining[42, 46, 51], and substitution of sparse coefficients (a widely used

scheme for fusion of remote sensing images with different spatial resolutions)[52, 56]. Similar to the

multi-scale decomposition based method, fusion strategies also make an important role in improving215

the fusion performances of the sparsity based methods. For example, Zhang et al. design an effective

sparse representation based mutli-focus image fusion method which considers not only the detailed

information regarding each image patch and its spatial neighbors[57]. Therefore, designing more

advanced fusion rules for sparse representation based fusion is expected to be another interesting

direction of this field.220

2.3. Methods performed in other domains

There are also many other image fusion methods which are not based on multi-scale decomposition

and sparse representation. Some of these methods directly calculate the weighted average of the pixels

in the input images to construct the fused image, or are applied in other transform domains. In this

subsection, all of these methods are classified into two general classes.225

1) Methods performed in pixel domain

A straightforward approach to image fusion is to take each pixel in the fused image as the weighted

average of the corresponding pixels in the input images. Generally, the weights are determined accord-

ing to the activity-level of different pixels[58]. For instance, in [59, 60], the support vector machines

and neural networks are used to choose the pixels with the highest activity, in which the wavelet coef-230

ficients are used as features. In order to make full use of the spatial context information, Li et al. first

partition the input images into uniform blocks and maximize the spatial frequency in each block [61].

In order to determine the optimal block size adaptively, De and Chanda make use of a quad-tree struc-

ture to obtain an optimal subdivision of blocks [62]. However, this kind of approaches may generate

block artifacts on object boundaries[61–63]. Instead of performing the block-wise fusion, region based235
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image fusion methods perform fusion to the regions with irregular shapes which are obtained by image

segmentation [64, 65]. A common limitation of segmentation based methods is that they rely heavily

on an accurate segmentation of the input images, which is another hard image processing topic.

Another way to make full use of the spatial correlation of adjacent pixels can be achieved by the

post-processing of the initial pixel-wise weight maps. For example, Li et al. first calculate the weights240

based on local features, then refine the weights based on image matting [66, 67]. Liu et al. measure

the activity level of source image patches to obtain an initial decision map, and then the decision map

is refined with feature matching and local activity-level comparison [68]. In [69], an edge-preserving

filtering based method is applied for the refinement of the initial weights, which will be more efficient

compared with the matting scheme. Rui et al. take neighborhood information into account through245

using random walker based optimization [70]. In [71], this method is further improved by deriving the

optimal fusion weights using Maximum A Posteriori (MAP) estimation in a hierarchical multivariate

Gaussian conditional random field model. Zhang et al. first decompose the source images into principal

component matrices and sparse matrices with robust principal component analysis, and then estimate

the weights by taking the local sparse features as the inputs of a pulse-coupled neural network[72].250

Instead of performing a weighted average of pixels, Kummar and Dass propose a total variation based

approach to fuse images acquired by multiple sensors, in which the imaging process is modeled as a

locally affine model and the fusion problem is posed as an inverse problem [73].

Generally, pixel-domain image fusion methods perform the fusion directly in the spatial domain,

leading to advantages and limitations. On one hand, compared with transform based methods, most255

of pixel-level weighted average based fusion methods are fast and easy to implement. On the other

hand, this kind of methods rely heavily on the accurate estimation of the optimal weights for different

pixels. Otherwise, the fusion performance will be quite limited.

2) Methods performed in other transform domains

Besides the fusion methods based on muli-scale decomposition or sparse representation, color space260

and dimension reduction based transforms also have been successfully applied for image fusion, such

as the intensity-hue-saturation (IHS) transform [74, 75], principal component analysis (PCA) [78], and

Gram-Schmidt (GS) transform [79] based methods. These methods have been widely used for fusion

of low resolution mutli-spectral and high resolution panchromatic images in remote sensing, which

is also known as the “pansharpening” problem. For these kinds of methods, the fusion is usually265

achieved by substituting the intensity or first principal component of the multi-spectral image with

the high resolution panchromatic image. This component substitution strategy operates in the same

way on the whole image, which can be considered as a global approach. On one hand, the global fusion

strategy ensures that the spatial details of the other input image can be well preserved in the fused

image. On the other hand, this kind of methods have not considered the local dissimilarities between270
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the input images, and thus, may produce significant color distortions in the fused images. In order

to solve this problem, some researchers aim at estimating the optimal component to be substituted

adaptively[76, 77, 80]. For instance, through minimizing the difference between the intensity component

and the panchromatic image, Rahmani et al. estimate the global weights for different bands adaptively

to construct the optimal intensity component[76]. For the same objective, Choi et al. generate the275

synthetic components by using a linear regression model. Moreover, the component will be only

partially replaced according to the correlation between the intensity component and the panchromatic

image[77]. Besides using the common IHS and PCA based transforms, Kang et al. apply the matting

model to decompose the input images into the spectral foreground, spectral background, and alpha

components for component substitution based fusion of remote sensing images[80].280

Although various color space and dimension reduction based image fusion methods have been

proposed, these methods are usually designed for fusion of color and gray-scale images, and thus,

are limited to some specific applications, such as the pansharpening problem mentioned above. For

other image fusion applications, some novel transforms and fusion strategies also have been developed.

For example, in [81], the multi-focus images are fused in the independent component analysis (ICA)285

transform domain using pixel-based and region-based fusion rules. In [82], the salient structures of the

input images are first fused in the gradient domain. Then, the fused image is reconstructed by solving

a Poisson equation which forces the gradients of the fused image to be close to the fused gradients.

Balasubramaniam and Ananthi apply the intuitionistic fuzzy set theory in image fusion, in which the

input images are first transferred into the fuzzy domain, and then fused using maximum and minimum290

operations [83].

2.4. Methods combining different transforms

Different transforms have their special advantages as well as some shortcomings. The multi-scale

transform based fusion can extract the spatial structures of different scales in the image. However, they

are not able to represent the low-frequency component sparsely. In this situation, if the low-frequency295

coefficients are integrated using simple fusion rules such as averaging or choose-max, it may degrade

the fusion performance because the low-frequency coefficients contain the main energy of the image.

The sparse representation based fusion can give more meaningful representations of source images by

dictionary learning, which are more finely fitted to the data. However, due to the limited number

of atoms in a dictionary, it is difficult to reconstruct the small-scale details of the source images.300

Furthermore, the other transforms, such as the IHS and PCA transforms are fast and effective for

fusion of remote sensing images with the corresponding fusion rules. However, these kinds of methods

cannot be directly used for other image fusion applications, such as multi-focus and multi-exposure

image fusion.

In order to combine the advantages of different transforms, there are various fusion methods that305

are based on the combination of different transforms. For instance, Li et al. propose a hybrid mul-
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tiresolution method by combining wavelets and contourlets [84]. Experiments show that the hybird

method performs better than the individual wavelets or contourlets based method. Liu et al. pro-

pose a general image fusion framework based on multi-scale transform and sparse representation[85].

Specifically, the source images are first decomposed using multi-scale decomposition methods. Then,310

the low frequency components are fused using the sparse representation method, while the high fre-

quency details are fused with traditional fusion rules. Finally, an inverse multi-scale transform is

performed to obtain the fused image. Instead of using the traditional multi-scale transforms, Jiang et

al. propose a fusion method based on morphological component analysis and sparse representation,

in which the source images are first decomposed with morphological component analysis, and then315

fused with sparse representation based method[86]. Wang et al. propose a fusion method based on the

nonsubsampled contourlet transform and sparse representation[87]. To avoid the weak points of the

IHS fusion technique and those of the retina-inspired multi-scale decomposition technique, Daneshvar

and Ghassemian propose an IHS and multi-scale decomposition integrated approach for the purpose

of medical image fusion [88]. Similarly, Zhang and Hong propose a fusion method that integrates the320

advantages of both IHS and wavelet techniques to reduce the color distortion in remote sensing image

fusion[89].

3. Objective fusion evaluation metrics

Generally, a good fusion algorithm should have the following properties: (1) the fused image should

be able to preserve most of the complementary and useful information from the input images. (2) the325

fusion algorithm does not produce any visual artifacts which may distract the human observer or the

further processing tasks. (3) the fusion algorithm should be robust to some imperfect conditions such

as mis-registration and noise. In most image fusion applications, it is often very difficult to obtain a

ground truth that the perfect fused image should be, making evaluations often subjective. Thus, after

the consideration of the fusion algorithms themselves, another important issue for image fusion is how330

to assess the fusion performance objectively.

Here, the existing objective fusion evaluation metrics are divided into two major classes, in which

one class requires a reference fused image, while the other does not.

3.1. Objective evaluation metrics requiring a reference image

In some applications, an “ideal” fused image may be available or manually constructed, which can335

then be used as a ground-truth to test the performance of image fusion. For example, in remote sensing

image fusion, the input multi-spectral (MS) and panchromatic (PAN) images can be first degraded.

Then, the degraded images are fused and compared with the original observed MS images to evaluate

the fusion performance [90]. In some special cases of multi-focus image fusion, a reference all-in-focus
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fused image can be constructed by performing manual segmentation and combination of the focused340

regions of each input image[66].

When the reference fused image is available, various objective fusion metrics could be used (known

as full-reference quality metrics). The root-mean-square error (RMSE) and the peak-signal-to-noise-

ratio (PSNR) are two classical ones. However, the two methods have been demonstrated to be not well

correlated with human perception in some special cases [91]. During the last decade, a number of new345

objective metrics have been proposed as better alternatives [92–97]. For example, the erreur relative

globale adimensionnelle de synthèse (ERGAS) index [93] is used to evaluate the spectral quality of

the fused image in remote sensing applications, which is based on calculating the global RMSE in

different bands. Instead of measuring the pixel difference between the fused image and the reference

image, Wang et al. propose an alternative complementary framework for quality assessment through350

measuring the degradation of structural information[94]. In [95], this method is further improved by

measuring the significance of local structures with the phase congruency. In [96], pixel-wise gradient

magnitude similarity and a standard deviation based pooling scheme are combined to construct a novel

full reference image quality metric. Instead of only considering the loss of structural information,

Capodiferro et al. propose a quality metric which is based on two diverse measures, in which one355

measures the loss based on the Fisher information about the positions of the structures, and the

other indicates the type of distortion that images underwent [97]. In order to investigate how humans

interpret visible and infrared images, Toet et al. [98] design an interesting experiment to test the

performances of different image fusion algorithms. In the test, a reference contour image is first

constructed by manually segmenting a set of input images. The resulting reference images are then360

used to evaluate the manual segmentation results of the fused images.

Although a number of full-reference image fusion metrics have been proposed, there are still many

unresolved problems, including the following: First, some metrics may be superior for evaluating one

image distortion type produced in the fusion process but inferior for others, which limits the use of these

metrics in different image fusion applications. Second, there have not been good solutions for cross-365

resolution image quality evaluation. For instance, in remote sensing applications, the full-reference

image fusion metrics can be only used in a reduced-resolution environment. Third, for images with

multiple channels, which include color, multispectrum, hyperspectrum, and three-dimensional volume,

most of existing full-reference image fusion metrics cannot be directly used.

3.2. Objective evaluation metrics without requiring a reference image370

In most image fusion applications, the “ideal” fused image is not always available. Therefore,

objective image fusion quality assessment metrics without assuming the availability of a “ground truth”

fused image (known as no-reference quality metrics) are highly desirable. Generally, the existing no-

reference fusion metrics can be categorized into two major groups: 1) information theory based metrics,

which only consider how much information is transferred from inputs to the fused image, and 2) local375
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feature based fusion metrics, which evaluate the relative amount of features (sensitive to human vision

system) that is transferred from the input images to the fused image.

In order to measure the amount of information that is preserved in the fused image, many solutions

have been proposed. For instance, Qu et al. develop a mutual information based metric, in which

mutual information (MI) is a quantitative measure of the distance between joint statistical distributions380

for two variables [99]. Hossny et al. propose a normalized version of the MI metric, which also

considers the entropy difference between different source images in the evaluation process [100]. In

order to more accurately model the transfer of information from input images to the fused output,

Cvejic et al. suggest using Tsallis entropy to define the mutual information metric [101]. In [102],

instead of calculating the MI value globally, a localized MI metric based on quadtree decomposition is385

investigated. Furthermore, Wang et al. introduce a nonlinear correlation coefficient for fusion quality

evaluation, which is similar to the definition of mutual information [103].

A common limitation of information theory based metrics is that they lack in estimating the transfer

of local features from source images into the fused image. Therefore, as alternatives of information

theory based metrics, considerable efforts have been made to develop local feature based objective390

performance measures. For instance, Xydeas and Petrović propose a gradient-based fusion metric

which estimates the amount of edge information that is transferred from the inputs to the fusion result

[104]. Similarly, Zheng et al. propose a metric based on spatial frequency, in which the edge information

is modeled as the gradients along different directions [37]. Liu et al. use phase congruency to measure

the amount of image features transferred from the input images to the fused image[105]. Furthermore,395

a number of structural similarity index (SSIM) based image fusion metrics have been built in recent

years to measure the preservation of structural information in the fused image [106–108]. Specifically,

the pixel-by-pixel SSIM maps between each source image and fused image are first calculated. Then,

a spatial pooling scheme could be used to obtain a global measure of fusion performance [107]. Since

the human visual system is highly adapted to structural information, and thus, a measurement of the400

loss of structural information in the fusion process can provide a good approximation of the real fusion

performance. Considering the diversity of the input images, improved SSIM based quality metrics

have been proposed for different image fusion applications including remote sensing image fusion [109],

multi-modal image fusion[110], and multi-focus image fusion [108]. Besides the SSIM index, other

powerful tools based on the human vision system also have been widely investigated. For instance,405

Chen and Varshney first employe the contrast sensitivity function (CSF) on the entire image and then

estimate the transferred local spatial information on a region-by-region basis [111]. Han et al. propose

an image fusion metric based on visual information fidelity (VIF), that has shown high performance

for image quality prediction[112].

Besides the increasing interests in developing non-reference objective fusion metrics, comprehensive410

evaluation and comparison of these metrics also have been investigated in recent years. For instance,
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Liu et al. conduct a comparative study on different image fusion metrics for night vision image fusion

applications [113]. Wei and Blum perform theoretical analysis for different quality measures applied to

the weighted averaging fusion algorithm [114]. Ma et al. test the performance of different fusion metrics

on a multi-exposure image database [115]. As concluded in these previous studies, there are still many415

challenging problems to be solved for the existing non-reference objective fusion metrics. First, most

existing objective fusion metrics work with gray images only. For color images with multiple channels,

proper accounting for color distortions may improve the performance of fusion metrics dramatically.

Second, in some applications, the input images may be captured in dynamic scenes, or contain noise and

image blurring. Therefore, it is useful to generalize the existing metrics for these imperfect situations.420

At last, how to implement the quality assessment methods in real-time is also a challenging problem.

4. Major applications

In recent years, pixel-level image fusion has been used in a wide variety of applications, such as

remote sensing [7, 116], medical diagnosis[10], surveillance[29], and photography[70] applications. In

this section, the data sources and challenging problems of the major application domains will be425

discussed and concluded.

4.1. Remote sensing applications

Fig. 5 shows two examples of image fusion in remote sensing applications, i.e., fusion of multi-

spectral (MS) and panchromatic (PAN) images, and fusion of multi-spectral and hyperspectral im-

ages. The first fusion application is an important problem in remote sensing, which is known as430

pansharpening [7]. It has been successfully applied to produce the imagery seen in the popular Google

Maps/Earth products. Furthermore, other remote sensing applications, e.g., change detection [117]

and classification [118] can be also benefited from pansharpened imagery. More recently, hyperspectral

(HS) imaging which acquires a scene with several hundreds of contiguous spectral bands has demon-

strated to be very useful for land-cover classification[119] and spectral unmixing[120]. However, the435

disadvantage of HS images is that they usually have lower spatial resolution than MS images, due

to the complexity of the sensors and cost issues. In this situation, a need has arisen for fusion of

HS, MS, and PAN images to improve the spatial resolution of hyperspectral images [121]. Compared

with pansharpening, this is a more difficult problem, since the multichannel MS image contains both

spectral and spatial information, and thus, the existing pansharpening methods are inapplicable or in-440

efficient for the fusion of HS and MS images. In addition to the modalities mentioned above, there are

several other imaging methods such as synthetic aperture radar (SAR), light detection and ranging (Li-

DAR), and moderate resolution imaging spectroradiometer (MODIS, a multi-temporal hyperspectral

sensor) that have been applied in image fusion applications. For instance, Alparone et al. extend

several representative pansharpening methods for the fusion of MS images and the high resolution445
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Figure 5: Examples of image fusion in remote sensing applications. (In this figure, the fusion of MS with PAN and

hyperspectral images are achieved using the matting model based method[80] and the sparse representation based method

[125], respectively.)

SAR images[122]. Byun et al. propose an area-based image fusion scheme for the integration of PAN,

MS, and SAR images[123]. Wu et al. propose a high spatial and temporal data fusion approach to

generate daily synthetic Landsat imagery by combining Landsat and MODIS data. Furthermore, the

fusion of air-bone hyperspectral and LiDAR data is also researched in recent years since it allows the

integration of spectral and elevation information [124].450

In Fig. 5, the data sources widely used in remote sensing image fusion applications are listed.

For instance, data sets captured by typical Earth imaging satellites, such as the IKONOS[126],

Quickbird[126], and Worldview-2[127], are available for pansharpening applications. Compared with

the MS and PAN images, co-registered HS and MS images are more difficult to obtain. Most of existing

fusion solutions are built on synthetic multi-spectral images obtained by selected bands of hyperspec-455

tral images, such as images captured by airborne visible infrared imaging spectrometer (AVIRIS), and

reflective optics system imaging spectrometer optical sensor (ROSIS). However, this problem will be

addressed in future remote sensing platforms. For instance, the Advanced Land Observation Satellite 3

(ALOS-3) will install the Hyperspectral Imager SUIte (HISUI) sensor, a hyper-multi spectral radiome-

ter, which able to capture HS and MS images with different spatial resolutions[128]. Furthermore,460

air-bone hyperspectral and LiDAR data sets are also available now. For instance, the 2013 and 2015

IEEE GRSS Data Fusion Contests have distributed several hyperspectral, color, and LiDAR data for

research purposes [129, 130].

The major challenging problems in the remote sensing image fusion field are concluded in Fig. 5:
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1) spectral and spatial distortions. As mentioned above, the data sets used in remote sensing image465

fusion usually exhibit many dissimilarities in spectral and spatial structures. In this situation, the

fusion process may produce distortions to these structures, and thus, introduce spectral and spatial

artifacts in the fused image. 2) Mis-registration. The second major problem in remote sensing image

fusion is how to reduce the effect of mis-registration. The source images used in remote sensing are

usually obtained from different times, different spectral bands or different acquisitions. Even for the470

PAN and MS data sets captured by the same platform, the two sensors do not exactly aim at the same

direction and their acquisition moments are also not precisely identical. In order to solve this problem,

most of the existing image fusion methods require a precise registration of the source images before

the fusion step. However, registration is quite challenging due to the significant difference between the

input images, especially for images captured with different acquisitions.475

4.2. Medical diagnosis applications

Fig. 6 shows two examples of image fusion in medical diagnosis applications, i.e., fusion of magnetic

resonance imaging (MRI) and positron emission tomography (PET) images, and fusion of MRI and

computerized tomography (CT) images. The major advantage of MRI images is that it is able to

capture the soft issue structures in organs such as brain, heart and eyes. Different from MRI imaging,480

the CT imaging is able to capture the bone structures in the human body with high spatial resolutions.

The PET imaging is a useful type of nuclear medicine imaging, while the captured images usually has

Figure 6: Examples of image fusion in medical diagnosis applications. (In this figure, the fusion of MRI with PET

and CT images are achieved using the shearlet transform based method[25] and the guided filtering based method [41],

respectively.)
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a low spatial resolution. The MRI, CT, and PET images can be used together with image fusion

techniques, which have shown advantages in improving the imaging accuracy, and practical clinical

applicability [10]. Furthermore, other medical imaging methods such as single photon emission com-485

puted tomography (SPECT) scan [131] and ultrasound imaging [132] can find applications through

image fusion.

In Fig. 6, the data sources widely used in medical image fusion applications are listed. For instance,

a brain image data set [133] which contains registered MRI, PET, and CT images has been distributed

by the Harvard Medical School. This data set has been widely used in related image fusion works490

[26, 54, 88]. Furthermore, the McConnell Brain Imaging Centre of the Montreal Neurological Institute

also has distributed a MRI image database [134] for research purposes.

The major challenging problems in the medical image fusion field are also concluded in Fig. 6:

1) The lack of clinical problem oriented fusion methods. As mentioned above, the major objective of

medical image fusion is to aid for better clinical outcomes. However, designing methods targeting a495

specific clinical problem is still a challenging and nontrivial task, since it require both medical domain

knowledge and algorithmic insights. 2) Objective fusion performance evaluation. The second major

problem in medical image fusion is how to evaluate the fusion performance objectively. Similar to the

first problem, there are many different clinical problems of image fusion, in which the desired fusion

effect may be quite different. 3) Mis-registration. Similar to the problem met in the remote sensing500

filed, the inaccurate registration of the objects between the images is also highly linked to the poor

performance of medical image fusion algorithms.

4.3. Surveillance applications

Fig. 7 shows two examples of image fusion in surveillance applications, i.e., fusion of visible and

infrared (IR) images, and fusion of daytime and nighttime images. The infrared image is sensitive to505

objects which have higher temperature than the background, making it able to “see in night” without

illumination. The disadvantage of IR image is its poor spatial resolution. This problem can be ad-

dressed easily by fusion of the IR and visible images[29, 135]. Fusion of daytime and nighttime images,

usually known as denighting, is another important technique for surveillance applications[136]. Due

to low illumination, nighttime images usually have lower contrast and higher noise than their corre-510

sponding daytime images of the same scene. Through fusing the nighttime images with the daytime

images, the quality of nighttime images can be improved significantly. Furthermore, in recent years,

the fusion of visible, near-infrared, and infrared images also has been investigated for other surveillance

problems, such as image dehazing [137], face recognition[138–140], and military reconnaissance[141].

In Fig. 7, the data sources widely used in surveillance image fusion applications are listed.515

For instance, some widely used infrared and visible image pairs can be downloaded from http://

www.ece.lehigh.edu/SPCRL/IF/image_fusion.htm and http://www.metapix.de/indexp.htm. For
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Figure 7: Examples of image fusion in surveillance applications. (In this figure, the fusion of visible and infrared

images, and the fusion of day-time and night-time images are achieved using the image matting based method[66] and

the gradient blending based method [143], respectively.)

face recognition, the Equinox face database gives a collection of both Long Wave Infrared and vis-

ible face images[142]. Furthermore, a color-thermal pedestrian data base can be found in http:

//vcipl-okstate.org/pbvs/bench/ which is provided by the Oklahoma State University (OSU).520

For image denighting, a data set consists of daytime and nighttime images of the same scene can be

downloaded at http://web.media.mit.edu/~raskar/NPAR04/

The major challenging problems in the surveillance image fusion field are also concluded in Fig.

7: 1) Computing efficiency. In surveillance applications, effective image fusion algorithms should well

combine the information of the original images and make the fused image clear. More importantly,525

surveillance applications usually involve continuous real-time monitoring. Therefore, an interesting

direction in surveillance applications is how to improve the speed of image fusion. 2) Imperfect en-

vironmental conditions. Another important problem in the surveillance image fusion field is that the

images may be acquired at imperfect conditions. For instance, the source images may contain serious

noise, and under-exposure due to the weather and illumination condition. Developing image fusion530

methods robust to such imperfect conditions is an important topic of this field.

4.4. Photography applications

Fig. 8 shows two examples of image fusion in photography applications, i.e., fusion of multi-

focus images, and fusion of multi-exposure images. Due to the limited depths of field of cameras,

it is impossible to have all objects with quite different distances from the camera to be all-in-focus535

within one shot. In order to solve this problem, mutli-focus image fusion merges multiple images

of the same scene but with different focus points to create an all-in-focus fused image[53, 68]. The
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Figure 8: Examples of image fusion in photography applications. (In this figure, the fusion of multi-focus images, and

the fusion of multi-exposure images are achieved using a guided filtering based method[41] and a recursive filtering based

method [69], respectively.)

fused image can well preserve the relevant information from the original data, and thus, is highly

desirable in many machine vision and image processing tasks. Similar to the idea of multi-focus

image fusion, multi-exposure image fusion aims at constructing an all-well-exposed image by combining540

multiple images taken with different exposures [70, 71]. Besides setting the exposure degree, another

photography technique is using flash under dark illumination. However, flash photography also brings

some unacceptable artifacts, e.g., red eyes, flat, and harsh lighting, and distracting sharp shadows at

silhouettes. As a solution of this problem, flash and non-flash image fusion is an interesting research

topic in this field [144].545

In Fig. 8, the data sources widely used in photography applications are listed. For instance,

a multi-focus image data set can be found at http://dsp.etfbl.net/mif, which is distributed by

Savic. Some multi-exposure images widely used in related researches can be downloaded at http:

//www.easyhdr.com. Recently, Ma et al. develop a multi-exposure database consists of 17 high

quality multi-exposure image sequences, which is named as the Waterloo IVC Multi-Exposure Fusion550

Image Database [115]. Furthermore, the well-known Petrović image fusion database [145] also contains

several pairs of multi-focus images and multi-exposure images.

At last, the major challenging problems in the photography image fusion field are concluded in Fig.

7: 1) Influence of moving targets. In photography applications, the multi-focus and mutli-exposure

images are always captured at different times. In this situation, moving objects may appear at different555

locations during the capturing process. The consequence on fusion is that moving objects might create

ghost artifacts to the fused image. 2) Application in consumer electronics. In the photography field,

the imaging process involves taking several shots with different camera settings, which is quite time
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consuming. Therefore, how to integrate the multi-focus and multi-exposure image fusion algorithms

into consumer electronics to capture high quality fused image in real-time is another challenging560

problem.

5. Future trends

Although various image fusion and objective performance evaluation methods have been proposed,

at the present time, there are still many open-ended problems in different applications. In this section,

the future trends in different application domains, i.e., remote sensing, medical diagnosis, surveillance,565

and photography, are analyzed.

In remote sensing, the major problem is how to decrease visual distortions when fusing multi-

spectral, hyperspectral, and panchormatic images. Furthermore, although the input images are usually

captured with the same platform, different imaging sensors do not exactly focus on the same direction

and their acquisition moments are also not precisely identical. In this situation, precise registration570

is challenging due to the significant resolution and spectral difference among the source images. At

last, due to the fast development of remote sensing sensors, developing novel algorithms for fusion of

images captured by novel aircraft or satellite sensors will be a hot research topic.

In medical diagnosis field, the precise registration is also a challenging topic since the medical

images are usually captured with different acquisition modalities. More importantly, designing methods575

targeting specific clinical problems is a challenging and nontrivial task of medical diagnosis. The reason

is that the design of fusion methods requires both medical domain knowledge and algorithmic insights.

Moreover, since the desired fusion performances may be not the same as those of general image fusion,

the objective evaluation of the medical image fusion methods is also a challenging topic.

In surveillance applications, two major requirements should be considered. On one hand, fusion580

methods are expected to be computationally efficient, so as to be used for real-time surveillance

applications. On the other hand, since the image acquisition conditions may vary dramatically in the

outdoor environment, designing fusion methods robust to imperfect conditions such as noise, under-

or over-exposure is a very important topic.

In photography field, since the input images are always captured at different times, moving objects585

may appear at different locations during the capturing process, and thus, produce ghost artifacts in the

fused image. In order to solve this problem, designing methods insensitive to such mis-registration is

a challenging topic of this area. Furthermore, another research direction is how to apply image fusion

algorithm into embedded consumer camera systems for practical photography applications.

6. Conclusions590

Pixel-level image fusion is one of the most important techniques to integrate and analyze informa-

tion from multiple sources. It allows a more comprehensive analysis of the captured scene, which is not
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available while looking at images from a single modality or camera setting, and thus, has been widely

used in feature extraction, object detection, recognition, and other related applications. In this paper,

we have presented a survey of various pixel-level image fusion methods, which are coarsely divided into595

fusion methods based on multi-scale decomposition, sparse representation, methods performed in other

domains, and methods based on combination of different transforms. Here, some conclusions about the

main categories of image fusion methods are given as follows.

In the first category, most of researches focus on representing the image spatial structures with

different multi-scale decompositions, such as pyramid, wavelets, multi-scale geometrical analysis, edge-600

preserving filtering, etc. Furthermore, various novel fusion rules which consider the high correlation

among adjacent pixels, have been developed to further improve fusion performance.

In the second category, the sparse representation based methods have been reviewed. It is found that

novel sparse coding and dictionary learning schemes have been researched seriously and successfully

applied in different image fusion applications. In the future, designing more advanced fusion rules for605

sparse representation based fusion methods will be an interesting research topic of this area.

In the third category, the pixel-domain image fusion methods and methods based on color and

PCA transforms are reviewed. It is found that the pixel-domain methods usually require advancing

fusion rules to achieve satisfactory performance, while the color and PCA transform based methods

are usually designed for specific applications, such as remote sensing and medical imaging.610

In the fourth category, several image fusion methods have been proposed to combine the advantages

of different transforms. Among these works, the combination of multi-scale decomposition and sparse

representation has become a hot topic of this area.

Besides the fusion methods, the objective evaluation of the fusion methods’ performances is also

a challenging topic. In this paper, these fusion quality metrics are divided into two major classes,615

i.e., metrics requiring a reference or not. For the first class, most of methods focus on measuring the

difference between the reference and the fused image more accurately. Some state-of-the-art methods

are usually developed based on the perception function of human vision. For the second class, a

very important topic is how to measure the complementary information (including the complementary

spatial structures, global contrast, etc.) and the visual artifacts appeared in the fused image (including620

edge, color artifacts, etc.). Furthermore, in different applications, the choose of an optimal fusion

quality metric also should consider the actual requirement is specific applications.

In conclusion, the significant progress in pixel-level image fusion research indicates the importance of

this research in various real applications. The prominent approaches include multi-scale decomposition,

sparse representation, etc. Moreover, combining multiple image fusion methods is also observed to be625

successful in this field. However, there still exist many challenges in image fusion and objective fusion

performance evaluation, resulting from image noise, resolution difference between images, imperfect

environmental conditions, computational complexity, moving targets, and limitations of the imaging
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hardware. Therefore, it is expected that novel researches and practical applications based on image

fusion would continue to grow in the upcoming years.630
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