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Fusing a high spatial resolution multispectral image (HR-MSI) with a low spatial resolution hyperspectral image
(LR-HSI) of the same scenario to acquire a high spatial resolution hyperspectral image (HR-HSI) has recently
attracted more and more attention. We propose a novel spatial-spectral sparse representation (SSSR) based ap-
proach for the fusion of an HR-MSI and an LR-HSI of the same scenario in this paper. In the proposed SSSR
method, we formulate the fusion problem as the estimation of spectral basis and coefficients from the LR-HSI
and HR-MSI. To better model the spatial and spectral characteristics of the HR-HSI, we incorporate the non-local
spatial similarities, priors of the spectral unmixing, and a sparse prior to the fusion problem. Meanwhile, instead
of keeping the spectral basis fixed, we design the alternative optimization algorithm for the estimation of spec-
tral basis and coefficients, which can achieve the accurate reconstruction. Experimental results on both non-blind

fusion and blind fusion cases demonstrate the effectiveness of the SSSR approach.

1. Introduction

Hyperspectral imaging is a promising imaging technique, which can
simultaneously acquire images of the same scenario across a number
of different wavelengths. Rich spectral characteristics existed in hyper-
spectral images (HSIs) with a number of spectral bands have shown per-
formance improvement in numerous remote sensing [1,2] and medical
imaging [3,4] applications. However, the spreading of sun photons over
many spectral bands determines large spectral resolution cells, and thus
the hyperspectral imaging sensors can only provide a low spatial res-
olution for the HSIs, to ensure a high signal-to-noise-ratio (SNR) [5].
Compared with hyperspectral imaging sensors, the existing multispec-
tral imaging sensors can capture an MSI with much higher spatial resolu-
tion and SNR given the same exposure time [6]. Therefore, an effective
way to reconstruct a high spatial resolution hyperspectral image (HR-
HSI) is combining a low spatial resolution hyperspectral image (LR-HSI)
with a high spatial resolution multispectral image (HR-MSI) [7]. This
combination is called as HSI-MSI fusion or HSI super-resolution [8,9],
which belongs to the pixel-level image fusion [10-18]. Pixel-level im-
age fusion is the technique to combine different images into a fused im-
age of better quality [7]. The pixel-level image fusion approaches have
shown considerable improvement in medical imaging [19,20], night vi-
sion [21], and remote sensing [22] applications.

To acquire an HR-HSI, one class of methods, called as the pan-
sharpening [22], fuse a high spatial resolution panchromatic (PAN) im-
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age (gray image) with an LR-HSI. The pan-sharpening methods can be
categorized two classes, i.e., transform based methods [23-25] and vari-
ational methods [26-29], etc. Since a panchromatic image has little
spectral resolution, the reconstructed HR-HSIs by these approaches usu-
ally contain considerable spectral distortions.

In spatial-spectral image fusion, another class of methods uses
Bayesian framework [30-32] to fuse an LR-HSI and an HR-MSI. Based on
prior knowledge, these Bayesian fusion methods integrate posterior dis-
tribution to achieve accurate estimation. Hardie et al. [30] apply max-
imum a posteriori (MAP) based framework for fusion of an LR-HSI and
an HR-MSI. Recently, Wei et al. [31] formulate the fusion process via
the likelihoods of the observations, and achieve fast fusion by solving a
Sylvester equation. Akhtar et al. [32] exploit Bayesian sparse represen-
tation to solve the fusion problem. Firstly, the probability distributions
of spectral basis are inferred with the Beta process, and then the ac-
quired distributions are utilized to calculate sparse coefficients of the
HR-HSIL.

Recently, utilizing the matrix factorization to fuse a LR-HSI with a
HR-MSI has been actively investigated [33-42]. Assuming that the HR-
HSI only contains a small number of pure spectral signatures [43], the
HR-HSI can be approximated by the spectral basis multiplied by the co-
efficient, as can be seen from Fig. 1. Kawakami et al. [33] propose to
learn the spectral basis from the LR-HSI with a sparse prior, and then
conduct sparse coding on the HR-MSI to estimate the coefficients. Then,
Huang et al. utilize the sparse prior [34] for the fusion of remote sensed
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Fig. 1. Spectral unmixing based HR-HSI decomposition.

HSIs, which use the KSVD algorithm [44] to estimate the spectral ba-
sis. Furthermore, methods proposed in [36-38] use the priors of spec-
tral unmixing to regularize the fusion problem. Instead of using fixed
spectral basis, these methods alternately update spectral basis and co-
efficients with non-negative and sum-to-one constraints, which yields
a more accurate fusion result. To better use the prior information of
the HR-HSI, approaches proposed in [39-42] also utilize the spatial
structures of the HR-HSI to regularize the fusion problem. For exam-
ple, Akhtar et al. [39] acquire coefficients with the simultaneous greedy
pursuit algorithm for each local patch, which utilizes the similarities
of spectral pixels in the local patch in the HR-HSI. Furthermore, Dong
et al. [42] propose a nonnegative dictionary-learning algorithm to learn
the spectral basis and utilize the structured sparse coding approach to
estimate the coefficients. They fully exploit the non-local spatial simi-
larities of the HR-HSI, thus achieving the good fusion results. Although
the above matrix factorization based methods achieve state-of-the-art
performance, they only utilize sparse, spectral or spatial priors of the
HR-HSI, do not fully use these three kinds of priors.

Since deep convolutional neural network (CNN) with deep architec-
ture has demonstrated to be very effective to exploit image characteris-
tics, one class of methods use the deep CNN for HSI-MSI fusion. Work
[45] propose a deep residual learning based framework for the fusion,
which uses the learned priors by deep CNN to regularize the fusion prob-
lem. In addition, Yang et al. [46] proposes the CNN with two branches
for HSI-MSI fusion. In order to exploit spectral correlation and fuse the
HR-MSI, they extract the features from the spectrum of each pixel in low
resolution HSI, and its corresponding spatial neighborhood in MSI, with
the two-branches CNN.

In this paper, a spatial-spectral sparse representation method is pro-
posed to reconstruct an HR-HSI by fusing an LR-HSI and an HR-MSL
Specifically, the fusion problem is formulated as the estimation of the
spectral basis and sparse coefficients from the LR-HSI and HR-MSI by
exploiting the non-local spatial self-similarities, priors knowledge of the
spectral unmixing, and a sparse prior. A typical natural scenario is of-
ten self-similar, and therefore it usually contains similar pixels from all
over the image, which has been proved to be effective for the image
restoration [42,47]. Besides, based on the spectral mixture model [43],
the spectral basis and coefficients are non-negative, and the coefficients
often satisfy the sum-to-one constraint. Furthermore, under appropriate
spectral basis, the coefficients can be sparse, which is helpful in many
HSI reconstruction problems [48]. These spatial, spectral, and sparse
priors of the HSI are used for regularizing the fusion problem to achieve
exact reconstruction. Besides, we design alternative optimization algo-
rithm to update the spectral basis and coefficients from the LR-HSI and
HR-HSI. Both of the updating for the spectral basis and coefficients can
be formulated as convex optimization problems, thus the framework of
alternating direction method of multipliers (ADMM) [49] can be used
to solve them efficiently.

We organize the remaining parts of this paper as follows.
Section 2 formulates the problem of the HSI-MSI fusion as a constrained
optimization problem. The proposed SSSR approach for HSI-MSI fusion
is presented in Section 3. We give the experimental results on two HSI
data sets in Section 4. Section 5 presents the conclusions.
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2. Problem formulation

In this paper, the HR-HSI, LR-HSI, and HR-MSI are denoted as the
matrices. The first dimension of the matric stands for the number of
bands, and the second dimension denotes the number of pixels. The
desired HR-HSI is denoted by X € RS*N, where N and S represent the
number of pixels and spectral bands, respectively. Y € RS*" represents
the acquired LR-HSI, where n and S denote the number of pixels and
bands in the LR-HSI, respectively. Y is spatially downsampled, i.e., N> n,
and has the same quantity of spectral bands as X. Z € R**¥ represents
the HR-MSI of the same scenario, where s and N are the number of bands
and pixels in the HR-MSI, respectively. With respect to X, Z has the same
number of pixels N and is the spectrally downsampled, i.e., S>s.

In the linear unmixing model, each pixel of the target HR-HSI x; is
assumed to be represented as the linear combination of distinct spectral
signatures [43], which means

(O]

where D € RS represents the spectral basis with L atoms, and a; €
RL denotes the corresponding coefficient. Accounting for pixels of the
whole HSI, the Eq. (1) is equivalent to

.,ay]=DA,

x; = Da,,

X = [X,Xy,...,Xy] =DJaj,a,, .. 2)

where A = [a;,a,,...,ay] € REXN is the coefficients.
The LR-HSI Y acquired by hyperspectral imaging sensor, can be for-
mulated as the downsampled version of X with the spatial mode, i.e.,

Y = XBS, 3)

where B € RVXV is the blur matrix, which models a convolution be-
tween the HR-HSI bands (represented by the rows of X) and point spread
function (PSF) of the imaging sensor, and S € RV*" is the spatial down-
sampling matrix.

The HR-MSI Z acquired by multispectral imaging sensor can be for-
mulated as the downsampled version of X with the spectral mode,

Z = RX, @)

where R € R*S is the spectral downsampling matrix. The rows of ma-
trix R represent the response of multispectral imaging sensor.

Combining the linear mixture model (2) with imaging models (3) and
(4) leads to

Y = DABS, Z =RDA, )

In this formulation, the target of fusion is estimating the spectral
basis D and corresponding coefficients A from the LR-HSI Y and HR-
MSI Z.

3. Proposed SSSR approach

As mentioned above, the fusion problem can be transformed as the
estimation of spectral basis D and coefficients A from the model (5).
Approaches proposed in [33,34,36,37,39] assume the spatial and spec-
tral information mainly exists in the LR-HSI and HR-HSI, respectively.
Therefore, they estimate the spectral basis D and coefficients A from the
LR-HSI and HR-MSI, respectively. However, the HR-MSI and LR-HSI still
preserve the spectral information and spatial information, respectively.
Therefore, we jointly estimate the spectral basis and coefficients from
both LR-HSI and HR-MSI, which can achieve more accurate reconstruc-
tion. In this way, the fusion problem can be written as

r]r)l’iglllY—DABSH?,+ [|Z — RDA||%. (6)

The optimizations for D and A are severely ill-posed, and they do not
have the unique solution. Therefore, we need to use some prior informa-
tion of the unknown HR-HSI to regularize it. Multiple image priors have
been exploited to constraint the optimization problem, such as a sparse
prior [33-35,50], priors of spectral unmixing [36-38], and spatial struc-
tures prior [39-42]. In this paper, we incorporate three important priors,
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i.e., a sparse prior, non-local spatial similarities, and priors of spectral
unmixing, into a unified framework.

3.1. Priors

Sparsity prior has shown to be very effective for dealing with various
HSI reconstruction problems [33,42,48], which assume each spectral
pixel in the HSI can be expressed as the linear combination of a few
distinct spectral signatures. In this way, with appropriate spectral basis,
each column of the coefficients A can be sparse. We can use ¢, norm to
describe sparsity. However, £, norm constraint optimization problem is
NP-hard, and it can be approximated with #; norm [51]. To exploit the
sparsity prior, the fusion problem can be written as

: 2 2
Din ||Y — DABS]I}; + [IZ — RDA[}, +m [|All O]

where ||A||; stands for the sum of absolute values of all elements of A,
and 7, is the regularization parameter.

A typical natural scene usually contains a collection of similar pixels
from all over the image, and these non-local similarities have shown to
be very effective for image recovery [42,52]. To exploit the non-local
similarities in the HR-HSI, we assume that a pixel x; in the HR-HSI can
be approximated by a linear combination of pixels, which are similar
to x;. Incorporating this prior, a non-local sparse representation based
fusion problem can be formulated as

N
min ||Y ~ DABS| |7, + ||1Z — RDA|I7. +n,[[All; + 1, Y, |IDa; — ¢}
” i=1

®)

where 7, is the regularization parameter. ¢; represents the linear combi-
nations of pixels, which are similar to x;. The vector ¢; can be computed
as

¢ = Z w,-jDaj )

where wj; is the weighting coefficients based on the similarity between
the pixels x; and x;, and S; denotes the indexes of the similar pixels. The
pixels x; and x; are not known, and we can compute the weighting co-
efficients on the HR-MSI, since the HR-MSI preserves the most spatial
information of the HR-HSI. More specifically, we perform k-NN cluster-
ing on the HR-MSI to search for k-nearest neighbors neighbors for each
pixel z;. The weighting coefficients w; can be calculated as

1
wyy = —exp(=|lz; = z;|I3/h) (10)

where c is the normalization constant, and z; and z; denote the pixels of
the HR-MSI. In practice, coefficient vector a; is unknown, and we can
not compute c; directly using the Eq. (9). We overcome this difficulty by
iteratively computing c; from the previous update of a;. Taking pixels of
the whole image into consideration, the problem (8) can be rewritten as
rgf/{lIIY—DABSHzF +[1Z = RDA[|} +n[All; + 7| DA - C| |3, an
where C = [¢,,¢,, ..., cy]. The Eq. (9) can be equivalently written as the
following matrix formulation:

C = WDA (12)
where the element of matrix W is computed as

S R JES;
W)= { 0, otherwise (13)

Besides, based on the priors of spectral unmixing, the coefficient vec-
tors satisfy the non-negativity and sum-to-one constraints [43]:

T, _—
ajZO, lLaj_l

(14)

where a; denotes j™ column of A, and 1, € R" is a vector with all
ones. We omit the sum-to-one constraint since it contradicts #; regu-
larizer that appears in the cost function of the optimization problem.
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Taking pixels of the whole image into consideration, the non-negative
constraint in (14) can also be written as

A>0 15)

As the spectral basis represents the reflectance of distinct materials,
each element of the spectral basis is in the range of [0,1]. Therefore, the
constraint for D can be represented as

0<D<1 (16)

To incorporate all the priors above, the fusion problem can be written
as

IS,KIIIY—DABSII§+ |Z ~ RDA|[3. +m,[|All; +n,|IDA - C| |7,

a7
s.t. 0<D<1 and A >0,

In this formulation, the priors of sparsity, spectral unmixing and non-
local spatial similarities are incorporated into a unified framework.

3.2. Alternating optimization of the fusion problem

The optimization problem (17) is highly non-convex, and the solu-
tion is not unique. Approaches proposed in [33,34,36,37,39-42] initial-
ize D, and estimate A with D fixed. In this way, D is not updated, and
the result relies on the initializations of D. Realizing the problem (17) is
convex with respect to D and A, respectively, we propose an optimiza-
tion technique that alternates optimizations with respect to D and A to
overcome this problem. In specific, we update A with D fixed, and then
update D with A fixed. The above two steps are iterated for convergence.
Finally, the desired HR-HSI can be estimated via the Eq. (2). The overall
algorithm for the fusion of an LR-HSI and an HR-MSI is summarized in
Algorithm 1.

Algorithm 1 SSSR-based HSI-MSI fusion.
Input: Y,Z, R, B, S
Output: X
Initialization:
Initialize the spectral basis D
learn non-local self-similarities matrix W via KNN clustering from Z
A=0
Fort=0,1,--,T,
(a) Estimate the coefficients A by solving the problem (18). (see
Algorithm 2)
(b) Estimate the spectral basis D by solving the problem (24). (see
Algorithm 3)
End
Compute the HR-HSI X via the Eq. (2).

3.2.1. Optimization with respect to the coefficients
With the spectral basis D fixed, the update for coefficients A can be
written as

rI}sinIIY—DABSII2F+ IZ = RDA|[}. +n,1|All; +n,|IDA = C|[7,,

(18)
s.t. A>0,

The optimization problem (18) can be tackled efficiently via the frame-
work of ADMM [49], which can separate the constraint and objective
function. In this way, the problem (18) can be decomposed as several
sub-problems, and each sub-problem can be solved analytically. We in-
troduce V|, = A and V, = DA, and obtain the following augmented La-
grangian function:

L(A,V1,V,,G|,G,) = [|Y = V,BS[|% + [|1Z - RDA[|% + 1, ||V, ]I,

2
+m|IDA - C||%
2

+u
F

G, |I?
V, - DA + -2
) +2”

G
_A+_]

+
u W

)

F

vi

st V,; >0, (19)
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where G, and G, are Lagrangian multipliers (x> 0).
(1): Minimizing the augmented Lagrangian function results in the
following iterations:

AHD = arg;nin L(A, V(lt), V(Zt), G(lt), G(Z'))
V(ZHI) = argvmin L (A(Hl), V(lt), Va. G(lt), Gg))
2
V(IHI) = ar%min L(A(H"), Vi, V;’+l), G(lt), G(21)> (20)
1
All sub-problems in (20) can be solved analytically, i.e.
AUD = [(RD)"RD + (1, + p)D"D + pI] ™! [(RD)TZ +n,DTC®
G(t) G(t)
V(f) _1 DT V(l) _2
+M(1+2” +u 2+2/4
G(l)
ViD= [Y(BS)T + ,4<DA<’+” - ﬁ)] [BSBS)! + pI1!
G(l)
VD - max(soft(A(’“) Sl W u I} @1
2u  2u
where
soft(a, b) = sign(a) * max(|a| — b,0) (22)
and max(a, b) represents the maximum of a and b.
(2): The Lagrangian multipliers G; and G, are updated by
G(1t+l) _ G(]r) +2ﬂ(V(lr+1) — AUy
GV = GY +2u(VITY — DAUD) (23)

(3): The matrix C* can be updated via the Eq. (12).
The above steps are iterated until convergence. The overall algorithm
for the estimation of coefficients A is summarized in Algorithm 2.

Algorithm 2 Estimate A with D fixed.
Input: Y,Z,R,B,S,D, A
Output: A
Initialization:
V,=A,V,=DA, G, =0,G, =0,C=WDA
Fort=0,1,--.,T,
(1) Compute A¢+D, V(I’“), Vg“) via the equation (21)
(2) Update the Lagrangian multipliers G(I’H) and G;’H) via the
equation (24)
(3) Update CU*+D via the equation (12);
End

3.2.2. Optimization with respect to the spectral basis
With the coefficients A fixed, the update for spectral basis D can be
written as

miny, ||Y — DABS||2 + [|Z — RDA||%,

s.t. 0<D<1, 24

Since the non-local spatial correlations of the spectral pixels are mainly
reflected by the coefficients A, the term #,||DA — C| |2F is excluded. The
problem (24) can also be solved by the ADMM algorithm. Specifically,
we introduce the variable V; = D, and acquire the following augmented
Lagrangian:

2

G
_D+_3

L(D.V3.Gs) = [[Y = DA|I}. + [IZ ~ RDA[}, + 3

s.t. 0<V;<1,

Vi

e
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where A = ABS is the dowmsampled coefficient, and Gy is the La-
grangian multiplier.

The optimization for (25) can be decomposed as solving the follow-
ing sub-problems:

1) Updating D*D: With V5 and Gj fixed, the optimization for D¢+D
in (25) can be solved analytically, we can acquire the following equa-
tion:

DUDH, + H,D*D = H, (26)

where

H, = (XKT + ,a)(AAT)‘1

H, =R"R
@)

~ G
H; = <YAT +RTZAT + ,4<Vg’> + 2—3>>(AAT)-‘ @7
U

Vectorizing DU*D and Hg, the Eq. (26) can also be written as

HT @ I+1® Hy)vec(DD) = vec(H,) (28)

where ® denotes the Kronecker product, and vec(-) is the vectorization
operation that stacks all columns of matrix into a vector. Hence, D¢+
can be computed as

vee*)) = (H” @ 1+ H! ® H,) ' vec(H,) 29)

Reference [38] introduces a more efficient way to compute D¢+, Since
H; and H, are real symmetric matrices, they can be diagonalized by
eigendecomposition, that is, H; = GIEIGI‘I and H, = GZEZGEI, where
X, = diag(a,, ay, ...,a;) and X, = diag(b,, b,, ..., bg) are diagonal matri-
ces. In this way, the Eq. (26) is equivalent to
Dz, + %, = G;'H;G, (30)

where D¢+D = G;'DU*DG,. Since E; and £, are diagonal matrices, the
problem (30) can be computed as

HoD™V = G;'H,G, @31

where O stands for the Hadamard product, and H is equivalent to
a+b,  ay+b ay + b

H= al-!-bz a, +b, aL—.i-bz 32)
al-';-bs a, +bg aL-;rbS

After acquiring D¢*D, DU+ can be computed as

D+ = G, DG (33)

The step with the highest computational cost is (33), which has the com-
putational complexity O(SL? + LS?), which is lower than O(S3L3) of
using (29).

2) Updating Vg’“) : the optimization for Vg’“) is written as

2

)
minvg’“) V(3t+1) —DpU+h 4 ﬁ st 0< V(31+1) <1 (34)
F
t+1 G
The solution of (34) is V(3 ) = min(max(D@+D — ﬁ L0), 1).
3) Updating the Lagrangian multiplier G(3t+1) .
G§z+1) _ G(;) i 2}4(ng+1) _ D(r+1)> 35)

The overall algorithm for the estimation of spectral basis D is sum-
marized in Algorithm 3.



R. Dian, S. Li and L. Fang et al.

Algorithm 3 Estimate D with A fixed.
Input: Y,Z,R,B,S,D, A

Output: D

Initialization:
V,;=D,G;=0

Fort=0,1,-,T;

€)) Compute DD via the equation (29)

(2) Compute ng+1) via solving problem (34)

(3) Update the Lagrangian multiplier Gg’*l) via the equation (35)
End

3.3. Computation complexity

The proposed SSSR method is summarized in Algorithm 1. The SSSR
method is iterated for the estimation of spectral basis and coefficients.
In the estimation of coefficients (Algorithm 2), the steps with the high-
est computational cost in each iteration are computing A"*! and Vg“)
via (21). Since the term[(RD)" RD + (1, + w)DTD + puI]~! can be com-
puted and stored in advance instead of being computed in each itera-
tion, the computation complexity of A’*! and V(Z’H) is O(L*N + SLN)
and O(SLN + SN?), respectively. Hence, the computation complexity
of each iteration in Algorithm 2 is O(L?N + SLN + SN?). In the esti-
mation of spectral basis (Algorithm 3), the step with the highest compu-
tational cost in each iteration is computing (33), which has the compu-
tational complexity O(SL? + LS?). Hence, the computation complexity
of each iteration in Algorithm 3 is O(SL? + LS?).

The computation complexity of the SSSR method is O(T| T,(L*N +
SLN + SN?)+ T\T5(SL?* + S?L)), where T;, T,, and Ty are the number
of iterations in Algorithms 1-3, respectively.

4. Experiments

In the section, we use both remotely sensed and ground-based HSI
data sets, to evaluate the effectiveness of the SSSR method.

4.1. Experiment datasets

We use one ground-based HSI datasets, Columbia Computer Vision
Laboratory (CAVE) database [53], for non-blind fusion, which has been
widely used in the HSI-MSI fusion literatures [33,37,42,54]. The CAVE
database has 32 HR-HSIs, which are produced by generalized assorted
pixel camera with high quality. Each HSI is of size 512 x 512 x 31, where
512x 512 is the spatial resolution, and 31 is the dimensionality of the
spectral mode. Each HSI has the wavelength range of 400 nm-700 nm.
The HSIs from the database are used as ground truth images. The LR-HSI
of size 64 x 64 x 31 is stimulated by firstly blurring the HR-HSI with a
8 x 8 Gaussian blur (standard deviation 2), and then by downsampling
every 8 pixels in both two spatial modes for each band of the ground
truth image. The HR-MSI Z of the same scenario is simulated by down-
sampling X with the spectral model using spectral downsampling matrix
P; derived from the response of a Nikon D700 camera.

The two remote sensing HSIs Pavia University [55] and Indian
Pines [56] are used for blind fusion. The Pavia University is of size
610 x 340 x 115, which has the 115 spectral bands and 610 x 340 spec-
tral pixels. We crop the top left 256 x 256 pixels for experiments. We
remove water vapor absorption bands, and thus reduce the HSI as 93
bands. To generate the LR-HSI of size 64 x 64 x 93, we firstly blur the
HR-HSI by using a 5x 5 Gaussian blur (standard deviation 2) and then
downsample every 4 pixels in both two spatial modes of the HR-HSI.
To generate the HR-MSI with size of 256 x 256 x 4, the IKONOS-like
reflectance spectral response filter is used to downsample the HR-HSI
with the spectral mode. The second remote sensing HSI is Indian Pines,
which is taken by the NASA’s Airborne Visible and Infrared Imaging
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Spectrometer (AVIRIS) [56]. The image is of size 128 x 128 x 224 cov-
ering the wavelength range 400nm-2500nm. We have reduced the num-
ber of bands to 200 by removing the bands 104-108, 150-163, and 220
of the image because of extremely low SNR and water absorptions in
those bands. The LR-HSI of size 32 x 32 x 200 is produced by applying a
5x 5 Gaussian blur (standard deviation 2), and then by downsampling
every 4 pixels in both two spatial modes for each band of the ground
truth image. The HR-MSI with six bands is simulated by Landsat7-like
spectral response.

4.2. Compared methods

The SSSR method is compared with three state-of-the-art HSI-MSI
fusion approaches, including the coupled spectral unmixing (CSU) [37],
coupled non-negative matrix factorization (CNNMF) [39], non-negative
structured sparse representation (NSSR) [42], and two two branches
CNN (Two-CNN-Fu) [46]. Since the Two-CNN-Fu is blind fusion method,
it is only evaluated on blind fusion case for fair comparison. The other
compared methods are evaluated for both blind fusion and non-blind
fusion cases.

4.3. Quantitative metrics

In our study, we use five indexes to evaluate the quality of recon-
structed HSIs. The first index is the peak signal to noise ratio (PSNR),
which is defined as the average PSNR of all bands for HSI, e.g.,

S
PSNR(X, X) = % Y PSNR(X'. X0, (36)

j=1
where Xi and X' denote i" band images of ground truth X € RS*¥ and
estimated HSIs X € RSXV, respectively, and both of them are scaled to a
range [0, 255]. The PSNR measures the similarities between the ground
truth image and reconstructed image. The higher the PSNR, the better
the fusion result.

The second index is the spectral angle mapper (SAM), which is de-
fined as the average angle between the ground truth pixel x; and recon-
structed pixel X;, i.e.

Z arcoS ————

The SAM is given in degrees. It measures the spectral quality of the
reconstructed HR-HSI. The smaller SAM, the better fusion quality.
The third index is the degree of distortion (DD), defined as

T

SAM(X, X) = 37

I%; ||2||X lla’

~ 1 ~
DD(X,X) = SN [lvee(X) — veeXOll;, (38)
where vec()A() and vec(X) are vectorizations of matrixes X and X, respec-
tively. The smaller the DD, the better the spectral quality.

The fourth index is the relative dimensionless global error in synthe-

sis (ERGAS) [57], which is defined as

ZS: MSEX!, X1
2
",

FRGAS(X, x) = 10 | L
C

S , (39)

i=1

where c is spatial downsampling factor, ug; is the mean value of X!, and
MSEX', X') represents the mean square error of X! and X!. The smaller
ERGAS, the better fusion results.

The fifth index is the universal image quality index (UIQI) [58]. In
this paper, we compute the UIQI for each window of size 32 x 32, and
then average the UIQI of all windows. Let Xj. and ﬁ; denote the j" win-
dow of i band ground truth image and estimated image, respectively.
The UIQI between i" band images X! and X is given by

2
. M Oxigi 2HxiH 26x;6f<3:
QX! X)) = — ZU - =, (40)
i “x
=1 °X; ﬂ +/4A X’ +O—§;
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Fig. 2. PSNR curves as functions of the number of atoms L for the CD (an HSI
in the CAVE database), Pavia University, and Indian Pines.

where H is the number of windows, Oy

i

tween X! and X/, and uy: and oy; are the mean value and standard
J J

& is the sample covariance be-
J

deviation of X‘] respectively. The UIQI index for HSI is defined as the
average value of all bands, i.e.

S
UIQIKX, X) = % D Q(X!, X1, (41
i=1

The larger the UIQI, the better the fusion results.

4.4. Parameters discussions

To evaluate the sensitivity of the SSSR to its key parameters, we
run the SSSR for different values of the number of atoms L, the spar-
sity regularization parameter 5, and the non-local spatial similarities
regularization parameter 7,.

a
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The number of atoms of spectral basis L has an important effect on
the fusion process. Fig. 2 plots the PSNR of the image CD (a represen-
tative HSI in CAVE database), Pavia University, and Indian Pines as
functions of the number of atoms L. As Fig. 2 shows, the PSNR has a
increase for three datasets when L and varies from 20 to 80. Then, the
PSNR reaches a stable level. Therefore, L is set to 80 for three datasets.

The parameter #; is highly related to the effect of the sparse prior.
The higher #,, the sparser A. Fig. 3(a) plots the PSNR of the image CD
(a representative HSI in CAVE database), Pavia University, and Indian
Pines as functions of logn, (log is base 10). As can be seen from Fig. 3(a),
the PSNR for the three datasets keeps relatively stable as logn; varies
from —7 to —4, and then it decreases as logy; increases. Therefore, we
set 7, = 1 x 107 for three datasets.

The parameter 7, is highly related to the effect of the non-local spa-
tial similarities. Fig. 3(b) plots the PSNR of the image CD ((a represen-
tative HSI in CAVE database)), Pavia University, and Indian Pines as
functions of logn, (log is base 10). As we can see from the Fig. 3(b), the
PSNR for Pavia University and Indian Pines keeps stable as logy, varies
from —7 to —3, and then it increases rapidly as logn, further increases.
However, the PSNR for CAVE database has the obvious raise when logy,
varies from —7 to —2, and then it decreases rapidly as logn, is larger than
—1. The non-local spatial similarities prior is more effective for the CAVE
database, compared with Pavia University and Indian Pines. The reason
may be that the spatial resolution of the Pavia University and Indian
Pines is much lower than that of the CAVE database, and the spectral
pixels in the CAVE database are much similar with each other, which
needs larger regularization parameter ;,. We set 7, = 1 x 107* for Pavia
University and Indian Pines, and #, = 0.015 for CAVE database.

4.5. Experimental results of non-blind fusion

Non-blind fusion is the case that the spectral response and PSF are
assumed to be perfectly known. In this section, we show the non-blind
fusion results on the CAVE database.

Table 1 shows the PSNR, SAM, DD, ERGAS, and UIQI of the recov-
ered HSIs for the CAVE database. We mark the best results in bold for
clarity. As we can see from Table 2, the SSSR method performs best
among the compared methods, and NSSR takes the second place. The
CSU and CNNMF exploit the prior of spectral unmixing but do not ex-
ploit the non-local spatial similarities and a sparse prior of the HR-HSI.
However, NSSR exploits the prior of non-local spatial similarities and

b

=¢-CAVE database —#-Pavia University
48

Indian Pines

46
44

logn,

Fig. 3. PSNR curves as functions of logn, and logy,. (a) logn;. (b) logn,.
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Table 1
Average quantitative metrics of non-blind fusion on the CAVE
database [53].

Method CAVE database [53]
PSNR SAM DD ERGAS UIQI
Best Values +0o0 0 0 0 1
CNNMF [36] 43.56 5.49 1.04 1.207 0.8815
CSU [37] 41.68 6.68 1.18 1.504 0.8639
NSSR [42] 45.02 4.69 0.78 0.988 0.8914
SSSR 45.93 4.38 0.69 0.899 0.9022
Table 2

Quantitative metrics of blind fusion on the Pavia University [55].

Method Pavia University [55]
PSNR SAM DD ERGAS UIQI

Best Values +00 0 0 0 1
CNNMF [36] 42.58 1.96 1.22 1.174 0.9935
CSU [37] 39.65 2.44 1.62 1.694 0.9889
NSSR [42] 42.24 1.89 1.30 1.172 0.9930
Two-CNN-Fu [46] 41.27 2.23 1.37 1.338 0.9923
SSSR 4399 1.68 1.07 0.986 0.9952

sparse prior of the HR-HSI, but do not fully utilize the priors spectral
unmixing. For purpose of the comparisons of the test methods in differ-
ent spectral bands, Fig. 4 plots the average PSNR curves as functions of
the wavelengths over CAVE database for the compared approaches. The
SSSR almost performs best in all spectral bands among the test methods,
as can be seen from Fig. 4. Besides, all the test methods perform well in
the middle spectral bands, and relatively bad in the first and last a few

) SSSR
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Fig. 4. Average PSNR curves as functions of the spectral bands on CAVE
database.

bands. The reason is that a blur exists in the first and last a few bands
[59]. To compare the performance in preserving spatial structures of
the test methods, the reconstructed HR-HSIs and corresponding error
images on flowers (an HSI in the CAVE database) of CNNMF, NSSR, and
SSSR at 9th and 18th bands are shown in Fig. 5. Since the CNNMF, NSSR,
and SSSR performs obviously better than the CSU, we select these three
methods for visual comparisons. The error images reflect the differences
between the fusion results and ground truths. From Fig. 5, we can see
that these three methods can recover most of the spatial details of the

Fig. 5. The first and second rows show the fused and
error images of flowers at 9th band, respectively. The
third and fourth rows show the fused and error im-
ages of flowers at 18th band, respectively. (a) LR-HSI;
(b) CNNMF [36]. (c) NSSR [42]. (d) SSSR. (e) Ground
truth.

) Ground truth
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(a) CNNMF

Information Fusion 49 (2019) 262-270

(f) Ground truth

0

10

Fig. 6. The first row shows the SAM images of the fused Pavia University. The second row shows the SAM images of the fused Indian Pines. (a) CNNMF [36]. (b)

CSU [37]. (c¢) NSSR [42]. (d) Two-CNN-Fu [46]. (e) SSSR. (f) Ground truth.

Table 3
Quantitative metrics of blind fusion on the Indian Pines [56].

Method Indian pines [56]
PSNR SAM DD ERGAS UIQI

Best Values +0o0 0 0 0 1
CNNMF [36] 44.68 1.74 1.28 0.804 0.8714
CSU [37] 44.93 1.87 1.38 0.833 0.8818
NSSR [42] 45.55 1.64 1.27 0.735 0.8951
Two-CNN-Fu [46] 41.56 2.27 2.09 1.060 0.8200
SSSR 46.88 1.55 1.06 0.677 0.9085

HR-HSI, though there are a few distortions in the fusion results. Further-
more, the SSSR method performs best keeping the spatial structures.

4.6. Experimental results of blind fusion

To better simulate the real data fusion, references [41,60] conduct
experiments of blind fusion, where the spectral response and PSF are
assumed to be unknown, which is similar to real data fusion case. We
use the two remote sensing HSIs, i.e., Pavia University and Indian Pines,
for the blind fusion experiments. The deep learning method Two-CNN-
Fu needs pre-training. The top left 256 x 256 region of Pavia University
is used for testing, and the rest part is used for training. Since the Indian
Pines is captured by AVIRIS, the other remote sensing HSIs captured
by AVIRIS are used for training when we test on Indian Pines. In the
experiments, both of the spectral response and PSF are estimated from
the LR-HSI and HR-MSI by the method proposed in [41]. Tables 2 and 3
show the quantitative metrics of blind fusion on the Pavia University and
Indian Pines, respectively. As can be seen from the Tables 2 and 3, the
proposed SSSR method still performs the best in terms of all quantitative
metrics, which means that our method is also effective in the blind fusion
cases. The performance of deep learning method Two-CNN-FU is not
competitive for the two HSIs. The main reason is that the Two-CNN-FU
does not incorporate the observation models (3) and (4), which explore
the relationship among the LR-HSI, HR-MSI, and HR-HSI. Fig. 6 shows
the SAM images of the test methods on the Pavia University and Indian
Pines. The SAM images reflect the SAM between the reconstructed HSIs
and ground truth. As can be seen from the SAM images, the SSSR has
less spectral errors than other methods on Pavia University. For Indian
Pines, the SSSR and CNNMF perform comparably in terms of the SAM
images.
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5. Conclusions

We present a spatial-spectral sparse representation based method,
termed as SSSR, to estimate an HR-HSI, by fusing an LR-HSI with an
HR-MSI counterpart. In the proposed SSSR method, we formulate the
fusion problem as the estimation of the spectral basis and coefficients by
exploiting three important prior information of the HR-HS], i.e., sparse
prior, non-local spatial similarities, priors of spectral unmixing. We de-
sign the alternative optimization algorithm to update the spectral basis
and coefficients with these priors. Experimental results on both non-
blind fusion and and blind fusion cases demonstrate the effectiveness of
the SSSR method.
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