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a b s t r a c t 

Fusing a high spatial resolution multispectral image (HR-MSI) with a low spatial resolution hyperspectral image 

(LR-HSI) of the same scenario to acquire a high spatial resolution hyperspectral image (HR-HSI) has recently 

attracted more and more attention. We propose a novel spatial-spectral sparse representation (SSSR) based ap- 

proach for the fusion of an HR-MSI and an LR-HSI of the same scenario in this paper. In the proposed SSSR 

method, we formulate the fusion problem as the estimation of spectral basis and coefficients from the LR-HSI 

and HR-MSI. To better model the spatial and spectral characteristics of the HR-HSI, we incorporate the non-local 

spatial similarities, priors of the spectral unmixing, and a sparse prior to the fusion problem. Meanwhile, instead 

of keeping the spectral basis fixed, we design the alternative optimization algorithm for the estimation of spec- 

tral basis and coefficients, which can achieve the accurate reconstruction. Experimental results on both non-blind 

fusion and blind fusion cases demonstrate the effectiveness of the SSSR approach. 
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. Introduction 

Hyperspectral imaging is a promising imaging technique, which can
imultaneously acquire images of the same scenario across a number
f different wavelengths. Rich spectral characteristics existed in hyper-
pectral images (HSIs) with a number of spectral bands have shown per-
ormance improvement in numerous remote sensing [1,2] and medical
maging [3,4] applications. However, the spreading of sun photons over
any spectral bands determines large spectral resolution cells, and thus

he hyperspectral imaging sensors can only provide a low spatial res-
lution for the HSIs, to ensure a high signal-to-noise-ratio (SNR) [5] .
ompared with hyperspectral imaging sensors, the existing multispec-
ral imaging sensors can capture an MSI with much higher spatial resolu-
ion and SNR given the same exposure time [6] . Therefore, an effective
ay to reconstruct a high spatial resolution hyperspectral image (HR-
SI) is combining a low spatial resolution hyperspectral image (LR-HSI)
ith a high spatial resolution multispectral image (HR-MSI) [7] . This

ombination is called as HSI-MSI fusion or HSI super-resolution [8,9] ,
hich belongs to the pixel-level image fusion [10–18] . Pixel-level im-
ge fusion is the technique to combine different images into a fused im-
ge of better quality [7] . The pixel-level image fusion approaches have
hown considerable improvement in medical imaging [19,20] , night vi-
ion [21] , and remote sensing [22] applications. 

To acquire an HR-HSI, one class of methods, called as the pan-
harpening [22] , fuse a high spatial resolution panchromatic (PAN) im-
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ge (gray image) with an LR-HSI. The pan-sharpening methods can be
ategorized two classes, i.e., transform based methods [23–25] and vari-
tional methods [26–29] , etc. Since a panchromatic image has little
pectral resolution, the reconstructed HR-HSIs by these approaches usu-
lly contain considerable spectral distortions. 

In spatial-spectral image fusion, another class of methods uses
ayesian framework [30–32] to fuse an LR-HSI and an HR-MSI. Based on
rior knowledge, these Bayesian fusion methods integrate posterior dis-
ribution to achieve accurate estimation. Hardie et al. [30] apply max-
mum a posteriori (MAP) based framework for fusion of an LR-HSI and
n HR-MSI. Recently, Wei et al. [31] formulate the fusion process via
he likelihoods of the observations, and achieve fast fusion by solving a
ylvester equation. Akhtar et al. [32] exploit Bayesian sparse represen-
ation to solve the fusion problem. Firstly, the probability distributions
f spectral basis are inferred with the Beta process, and then the ac-
uired distributions are utilized to calculate sparse coefficients of the
R-HSI. 

Recently, utilizing the matrix factorization to fuse a LR-HSI with a
R-MSI has been actively investigated [33–42] . Assuming that the HR-
SI only contains a small number of pure spectral signatures [43] , the
R-HSI can be approximated by the spectral basis multiplied by the co-
fficient, as can be seen from Fig. 1 . Kawakami et al. [33] propose to
earn the spectral basis from the LR-HSI with a sparse prior, and then
onduct sparse coding on the HR-MSI to estimate the coefficients. Then,
uang et al. utilize the sparse prior [34] for the fusion of remote sensed
ovember 2018 
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Fig. 1. Spectral unmixing based HR-HSI decomposition. 
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SIs, which use the KSVD algorithm [44] to estimate the spectral ba-
is. Furthermore, methods proposed in [36–38] use the priors of spec-
ral unmixing to regularize the fusion problem. Instead of using fixed
pectral basis, these methods alternately update spectral basis and co-
fficients with non-negative and sum-to-one constraints, which yields
 more accurate fusion result. To better use the prior information of
he HR-HSI, approaches proposed in [39–42] also utilize the spatial
tructures of the HR-HSI to regularize the fusion problem. For exam-
le, Akhtar et al. [39] acquire coefficients with the simultaneous greedy
ursuit algorithm for each local patch, which utilizes the similarities
f spectral pixels in the local patch in the HR-HSI. Furthermore, Dong
t al. [42] propose a nonnegative dictionary-learning algorithm to learn
he spectral basis and utilize the structured sparse coding approach to
stimate the coefficients. They fully exploit the non-local spatial simi-
arities of the HR-HSI, thus achieving the good fusion results. Although
he above matrix factorization based methods achieve state-of-the-art
erformance, they only utilize sparse, spectral or spatial priors of the
R-HSI, do not fully use these three kinds of priors. 

Since deep convolutional neural network (CNN) with deep architec-
ure has demonstrated to be very effective to exploit image characteris-
ics, one class of methods use the deep CNN for HSI-MSI fusion. Work
45] propose a deep residual learning based framework for the fusion,
hich uses the learned priors by deep CNN to regularize the fusion prob-

em. In addition, Yang et al. [46] proposes the CNN with two branches
or HSI-MSI fusion. In order to exploit spectral correlation and fuse the
R-MSI, they extract the features from the spectrum of each pixel in low

esolution HSI, and its corresponding spatial neighborhood in MSI, with
he two-branches CNN. 

In this paper, a spatial-spectral sparse representation method is pro-
osed to reconstruct an HR-HSI by fusing an LR-HSI and an HR-MSI.
pecifically, the fusion problem is formulated as the estimation of the
pectral basis and sparse coefficients from the LR-HSI and HR-MSI by
xploiting the non-local spatial self-similarities, priors knowledge of the
pectral unmixing, and a sparse prior. A typical natural scenario is of-
en self-similar, and therefore it usually contains similar pixels from all
ver the image, which has been proved to be effective for the image
estoration [42,47] . Besides, based on the spectral mixture model [43] ,
he spectral basis and coefficients are non-negative, and the coefficients
ften satisfy the sum-to-one constraint. Furthermore, under appropriate
pectral basis, the coefficients can be sparse, which is helpful in many
SI reconstruction problems [48] . These spatial, spectral, and sparse
riors of the HSI are used for regularizing the fusion problem to achieve
xact reconstruction. Besides, we design alternative optimization algo-
ithm to update the spectral basis and coefficients from the LR-HSI and
R-HSI. Both of the updating for the spectral basis and coefficients can
e formulated as convex optimization problems, thus the framework of
lternating direction method of multipliers (ADMM) [49] can be used
o solve them efficiently. 

We organize the remaining parts of this paper as follows.
ection 2 formulates the problem of the HSI-MSI fusion as a constrained
ptimization problem. The proposed SSSR approach for HSI-MSI fusion
s presented in Section 3 . We give the experimental results on two HSI
ata sets in Section 4 . Section 5 presents the conclusions. 
263 
. Problem formulation 

In this paper, the HR-HSI, LR-HSI, and HR-MSI are denoted as the
atrices. The first dimension of the matric stands for the number of

ands, and the second dimension denotes the number of pixels. The
esired HR-HSI is denoted by 𝐗 ∈ ℝ 

𝑆×𝑁 , where N and S represent the
umber of pixels and spectral bands, respectively. 𝐘 ∈ ℝ 

𝑆×𝑛 represents
he acquired LR-HSI, where n and S denote the number of pixels and
ands in the LR-HSI, respectively. Y is spatially downsampled, i.e., N > n ,
nd has the same quantity of spectral bands as X . 𝐙 ∈ ℝ 

𝑠 ×𝑁 represents
he HR-MSI of the same scenario, where s and N are the number of bands
nd pixels in the HR-MSI, respectively. With respect to X, Z has the same
umber of pixels N and is the spectrally downsampled, i.e., S > s . 

In the linear unmixing model, each pixel of the target HR-HSI x i is
ssumed to be represented as the linear combination of distinct spectral
ignatures [43] , which means 

 𝑖 = 𝐃𝐚 𝑖 , (1)

here 𝐃 ∈ ℝ 

𝑆×𝐿 represents the spectral basis with L atoms, and 𝐚 𝑖 ∈
 

𝐿 denotes the corresponding coefficient. Accounting for pixels of the
hole HSI, the Eq. (1) is equivalent to 

 = [ 𝐱 1 , 𝐱 2 , … , 𝐱 𝑁 

] = 𝐃 [ 𝐚 1 , 𝐚 2 , … , 𝐚 𝑁 

] = 𝐃𝐀 , (2)

here 𝐀 = [ 𝐚 1 , 𝐚 2 , … , 𝐚 𝑁 

] ∈ ℝ 

𝐿 ×𝑁 is the coefficients. 
The LR-HSI Y acquired by hyperspectral imaging sensor, can be for-

ulated as the downsampled version of X with the spatial mode, i.e.,

 = 𝐗𝐁𝐒 , (3)

here 𝐁 ∈ ℝ 

𝑁×𝑁 is the blur matrix, which models a convolution be-
ween the HR-HSI bands (represented by the rows of X ) and point spread
unction (PSF) of the imaging sensor, and 𝐒 ∈ ℝ 

𝑁×𝑛 is the spatial down-
ampling matrix. 

The HR-MSI Z acquired by multispectral imaging sensor can be for-
ulated as the downsampled version of X with the spectral mode, 

 = 𝐑𝐗 , (4)

here 𝐑 ∈ ℝ 

𝑠 ×𝑆 is the spectral downsampling matrix. The rows of ma-
rix R represent the response of multispectral imaging sensor. 

Combining the linear mixture model (2) with imaging models (3) and
4) leads to 

 = 𝐃𝐀𝐁𝐒 , 𝐙 = 𝐑𝐃𝐀 , (5)

In this formulation, the target of fusion is estimating the spectral
asis D and corresponding coefficients A from the LR-HSI Y and HR-
SI Z . 

. Proposed SSSR approach 

As mentioned above, the fusion problem can be transformed as the
stimation of spectral basis D and coefficients A from the model (5) .
pproaches proposed in [33,34,36,37,39] assume the spatial and spec-

ral information mainly exists in the LR-HSI and HR-HSI, respectively.
herefore, they estimate the spectral basis D and coefficients A from the
R-HSI and HR-MSI, respectively. However, the HR-MSI and LR-HSI still
reserve the spectral information and spatial information, respectively.
herefore, we jointly estimate the spectral basis and coefficients from
oth LR-HSI and HR-MSI, which can achieve more accurate reconstruc-
ion. In this way, the fusion problem can be written as 

in 
𝐃 , 𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
. (6)

The optimizations for D and A are severely ill-posed, and they do not
ave the unique solution. Therefore, we need to use some prior informa-
ion of the unknown HR-HSI to regularize it. Multiple image priors have
een exploited to constraint the optimization problem, such as a sparse
rior [33–35,50] , priors of spectral unmixing [36–38] , and spatial struc-
ures prior [39–42] . In this paper, we incorporate three important priors,
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.e., a sparse prior, non-local spatial similarities, and priors of spectral
nmixing, into a unified framework. 

.1. Priors 

Sparsity prior has shown to be very effective for dealing with various
SI reconstruction problems [33,42,48] , which assume each spectral
ixel in the HSI can be expressed as the linear combination of a few
istinct spectral signatures. In this way, with appropriate spectral basis,
ach column of the coefficients A can be sparse. We can use 𝓁 0 norm to
escribe sparsity. However, 𝓁 0 norm constraint optimization problem is
P-hard, and it can be approximated with 𝓁 1 norm [51] . To exploit the

parsity prior, the fusion problem can be written as 

in 
𝐃 , 𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
+ 𝜂1 ||𝐀 ||1 (7)

here || A || 1 stands for the sum of absolute values of all elements of A ,
nd 𝜂1 is the regularization parameter. 

A typical natural scene usually contains a collection of similar pixels
rom all over the image, and these non-local similarities have shown to
e very effective for image recovery [42,52] . To exploit the non-local
imilarities in the HR-HSI, we assume that a pixel x i in the HR-HSI can
e approximated by a linear combination of pixels, which are similar
o x i . Incorporating this prior, a non-local sparse representation based
usion problem can be formulated as 

in 
𝐃 , 𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
+ 𝜂1 ||𝐀 ||1 + 𝜂2 

𝑁 ∑
𝑖 =1 

||𝐃𝐚 𝑗 − 𝐜 𝑖 ||2 𝐹 (8)

here 𝜂2 is the regularization parameter. c i represents the linear combi-
ations of pixels, which are similar to x i . The vector c i can be computed
s 

 𝑖 = 

∑
𝑗∈𝑆 𝑖 

𝑤 𝑖𝑗 𝐃𝐚 𝑗 (9)

here w ij is the weighting coefficients based on the similarity between
he pixels x i and x j , and S i denotes the indexes of the similar pixels. The
ixels x i and x j are not known, and we can compute the weighting co-
fficients on the HR-MSI, since the HR-MSI preserves the most spatial
nformation of the HR-HSI. More specifically, we perform k-NN cluster-
ng on the HR-MSI to search for k -nearest neighbors neighbors for each
ixel z i . The weighting coefficients w ij can be calculated as 

 𝑖𝑗 = 

1 
𝑐 

exp ( − ||𝐳 𝑖 − 𝐳 𝑗 ||2 𝐹 ∕ ℎ ) (10)

here c is the normalization constant, and z i and z j denote the pixels of
he HR-MSI. In practice, coefficient vector a i is unknown, and we can
ot compute c i directly using the Eq. (9) . We overcome this difficulty by
teratively computing c i from the previous update of a i . Taking pixels of
he whole image into consideration, the problem (8) can be rewritten as

in 
𝐃 , 𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
+ 𝜂1 ||𝐀 ||1 + 𝜂2 ||𝐃𝐀 − 𝐂 ||2 

𝐹 
(11)

here 𝐂 = [ 𝐜 1 , 𝐜 2 , … , 𝐜 𝑁 

] . The Eq. (9) can be equivalently written as the
ollowing matrix formulation: 

 = 𝐖𝐃𝐀 (12)

here the element of matrix W is computed as 

 ( 𝑖, 𝑗) = 

{ 

𝑤 𝑖𝑗 , 𝑗 ∈ 𝑆 𝑖 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(13)

Besides, based on the priors of spectral unmixing, the coefficient vec-
ors satisfy the non-negativity and sum-to-one constraints [43] : 

 𝑗 ≥ 0 , 𝟏 𝑇 
𝐿 
𝐚 𝑗 = 1 (14)

here a j denotes j th column of A , and 𝟏 𝐿 ∈ ℝ 

𝐿 is a vector with all
nes. We omit the sum-to-one constraint since it contradicts 𝓁 1 regu-
arizer that appears in the cost function of the optimization problem.
264 
aking pixels of the whole image into consideration, the non-negative
onstraint in (14) can also be written as 

 ≥ 0 (15)

As the spectral basis represents the reflectance of distinct materials,
ach element of the spectral basis is in the range of [0,1]. Therefore, the
onstraint for D can be represented as 

 ≤ 𝐃 ≤ 1 (16)

To incorporate all the priors above, the fusion problem can be written
s 

in 
𝐃 , 𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
+ 𝜂1 ||𝐀 ||1 + 𝜂2 ||𝐃𝐀 − 𝐂 ||2 

𝐹 
, 

s.t. 0 ≤ 𝐃 ≤ 1 and 𝐀 ≥ 0 , 
(17) 

In this formulation, the priors of sparsity, spectral unmixing and non-
ocal spatial similarities are incorporated into a unified framework. 

.2. Alternating optimization of the fusion problem 

The optimization problem (17) is highly non-convex, and the solu-
ion is not unique. Approaches proposed in [33,34,36,37,39–42] initial-
ze D , and estimate A with D fixed. In this way, D is not updated, and
he result relies on the initializations of D . Realizing the problem (17) is
onvex with respect to D and A , respectively, we propose an optimiza-
ion technique that alternates optimizations with respect to D and A to
vercome this problem. In specific, we update A with D fixed, and then
pdate D with A fixed. The above two steps are iterated for convergence.
inally, the desired HR-HSI can be estimated via the Eq. (2) . The overall
lgorithm for the fusion of an LR-HSI and an HR-MSI is summarized in
lgorithm 1 . 

lgorithm 1 SSSR-based HSI-MSI fusion. 

nput : 𝐘 , 𝐙 , 𝐑 , 𝐁 , 𝐒 
utput : 𝐗 

nitialization : 
Initialize the spectral basis 𝐃 

learn non-local self-similarities matrix 𝐖 via KNN clustering from 𝐙 

𝐀 =0 
or 𝑡 = 0 , 1 , ⋯ , 𝑇 1 
(a) Estimate the coefficients 𝐀 by solving the problem (18). (see 

Algorithm 2) 
(b) Estimate the spectral basis 𝐃 by solving the problem (24). (see 

Algorithm 3) 
nd 

ompute the HR-HSI 𝐗 via the Eq. (2). 

.2.1. Optimization with respect to the coefficients 

With the spectral basis D fixed, the update for coefficients A can be
ritten as 

in 
𝐀 

||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
+ 𝜂1 ||𝐀 ||1 + 𝜂2 ||𝐃𝐀 − 𝐂 ||2 

𝐹 
, 

s.t. 𝐀 ≥ 0 , 
(18) 

he optimization problem (18) can be tackled efficiently via the frame-
ork of ADMM [49] , which can separate the constraint and objective

unction. In this way, the problem (18) can be decomposed as several
ub-problems, and each sub-problem can be solved analytically. We in-
roduce 𝐕 1 = 𝐀 and 𝐕 2 = 𝐃𝐀 , and obtain the following augmented La-
rangian function: 

 ( 𝐀 , 𝐕 1 , 𝐕 2 , 𝐆 1 , 𝐆 2 ) = ||𝐘 − 𝐕 2 𝐁𝐒 ||2 𝐹 + ||𝐙 − 𝐑𝐃𝐀 ||2 
𝐹 
+ 𝜂1 ||𝐕 1 ||1 

+ 𝜂2 ||𝐃𝐀 − 𝐂 ||2 
𝐹 

+ 𝜇
‖‖‖‖𝐕 1 − 𝐀 + 

𝐆 1 
2 𝜇

‖‖‖‖
2 

𝐹 

+ 𝜇
‖‖‖‖𝐕 2 − 𝐃𝐀 + 

𝐆 2 
2 𝜇

‖‖‖‖
2 

𝐹 

, 

s.t. 𝐕 ≥ 0 , (19) 
1 
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here G 1 and G 2 are Lagrangian multipliers ( 𝜇 > 0). 
(1): Minimizing the augmented Lagrangian function results in the

ollowing iterations: 

 

( 𝑡 +1) = argmin 
𝐀 

𝐿 

(
𝐀 , 𝐕 

( 𝑡 ) 
1 , 𝐕 

( 𝑡 ) 
2 , 𝐆 

( 𝑡 ) 
1 , 𝐆 

( 𝑡 ) 
2 

)
 

( 𝑡 +1) 
2 = argmin 

𝐕 2 
𝐿 

(
𝐀 

( 𝑡 +1) , 𝐕 

( 𝑡 ) 
1 , 𝐕 2 , 𝐆 

( 𝑡 ) 
1 , 𝐆 

( 𝑡 ) 
2 

)
 

( 𝑡 +1) 
1 = argmin 

𝐕 1 
𝐿 

(
𝐀 

( 𝑡 +1) , 𝐕 1 , 𝐕 

( 𝑡 +1) 
2 , 𝐆 

( 𝑡 ) 
1 , 𝐆 

( 𝑡 ) 
2 

)
(20) 

All sub-problems in (20) can be solved analytically, i.e. 

 

( 𝑡 +1) = [ ( 𝐑𝐃 ) 𝑇 𝐑𝐃 + ( 𝜂2 + 𝜇) 𝐃 

𝑇 𝐃 + 𝜇𝐈 ] −1 
[ 

( 𝐑𝐃 ) 𝑇 𝐙 + 𝜂2 𝐃 

𝑇 𝐂 

( 𝑡 ) 

+ 𝜇

( 

𝐕 

( 𝑡 ) 
1 + 

𝐆 

( 𝑡 ) 
1 

2 𝜇

) 

+ 𝜇𝐃 

𝑇 

( 

𝐕 

( 𝑡 ) 
2 + 

𝐆 

( 𝑡 ) 
2 

2 𝜇

) ] 

 

( 𝑡 +1) 
2 = 

[ 

𝐘 ( 𝐁𝐒 ) 𝑇 + 𝜇

( 

𝐃𝐀 

( 𝑡 +1) − 

𝐆 

( 𝑡 ) 
2 

2 𝜇

) ] 

[ 𝐁𝐒 ( 𝐁𝐒 ) 𝑇 + 𝜇𝐈 ] −1 

 

( 𝑡 +1) 
1 = max 

( 

soft 

( 

𝐀 

( 𝑡 +1) − 

𝐆 

( 𝑡 ) 
1 

2 𝜇
, 
𝜂1 
2 𝜇

) 

, 0 

) 

(21) 

here 

oft ( 𝑎, 𝑏 ) = sign ( 𝑎 ) ∗ max ( |𝑎 | − 𝑏, 0) (22)

nd max( a, b ) represents the maximum of a and b . 
(2): The Lagrangian multipliers G 1 and G 2 are updated by 

 

( 𝑡 +1) 
1 = 𝐆 

( 𝑡 ) 
1 + 2 𝜇( 𝐕 

( 𝑡 +1) 
1 − 𝐀 

( 𝑡 +1) ) 

 

( 𝑡 +1) 
2 = 𝐆 

( 𝑡 ) 
2 + 2 𝜇( 𝐕 

( 𝑡 +1) 
2 − 𝐃𝐀 

( 𝑡 +1) ) (23) 

(3): The matrix 𝐂 

( 𝑡 +1) can be updated via the Eq. (12) . 
The above steps are iterated until convergence. The overall algorithm

or the estimation of coefficients A is summarized in Algorithm 2 . 

lgorithm 2 Estimate A with D fixed. 

nput : 𝐘 , 𝐙 , 𝐑 , 𝐁 , 𝐒 , 𝐃 , 𝐀 

utput : 𝐀 

nitialization : 
𝐕 1 = 𝐀 , 𝐕 2 = 𝐃𝐀 , 𝐆 1 = 0 , 𝐆 2 = 0 , 𝐂 = 𝐖𝐃𝐀 

or 𝑡 = 0 , 1 , ⋯ , 𝑇 2 
(1) Compute 𝐀 

( 𝑡 +1) , 𝐕 

( 𝑡 +1) 
1 , 𝐕 

( 𝑡 +1) 
2 via the equation (21) 

(2) Update the Lagrangian multipliers 𝐆 

( 𝑡 +1) 
1 and 𝐆 

( 𝑡 +1) 
2 via the 

equation (24) 
(3) Update 𝐂 

( 𝑡 +1) via the equation (12); 
nd 

.2.2. Optimization with respect to the spectral basis 

With the coefficients A fixed, the update for spectral basis D can be
ritten as 

in 𝐃 ||𝐘 − 𝐃𝐀𝐁𝐒 ||2 
𝐹 
+ ||𝐙 − 𝐑𝐃𝐀 ||2 

𝐹 
, 

s.t. 0 ≤ 𝐃 ≤ 1 , 
(24) 

ince the non-local spatial correlations of the spectral pixels are mainly
eflected by the coefficients A , the term 𝜂2 ||𝐃𝐀 − 𝐂 ||2 

𝐹 
is excluded. The

roblem (24) can also be solved by the ADMM algorithm. Specifically,
e introduce the variable 𝐕 3 = 𝐃 , and acquire the following augmented
agrangian: 

 ( 𝐃 , 𝐕 3 , 𝐆 3 ) = ‖𝐘 − 𝐃 ̃𝐀 ‖2 
𝐹 
+ ‖𝐙 − 𝐑𝐃𝐀 ‖2 

𝐹 
+ 𝜇

‖‖‖‖𝐕 3 − 𝐃 + 

𝐆 3 
2 𝜇

‖‖‖‖
2 

𝐹 

, 

s.t. 0 ≤ 𝐕 3 ≤ 1 , 
(25) 
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here �̃� = 𝐀𝐁𝐒 is the dowmsampled coefficient, and G 3 is the La-
rangian multiplier. 

The optimization for (25) can be decomposed as solving the follow-
ng sub-problems: 

1) Updating 𝐃 

( 𝑡 +1) : With V 3 and G 3 fixed, the optimization for 𝐃 

( 𝑡 +1) 

n (25) can be solved analytically, we can acquire the following equa-
ion: 

 

( 𝑡 +1) 𝐇 1 + 𝐇 2 𝐃 

( 𝑡 +1) = 𝐇 3 (26)

here 

 1 = 

(
�̃� ̃𝐀 

𝑇 + 𝜇𝐈 
)(

𝐀𝐀 

𝑇 
)−1 

 2 = 𝐑 

𝑇 𝐑 

 3 = 

( 

𝐘 ̃𝐀 

𝑇 + 𝐑 

𝑇 𝐙𝐀 

𝑇 + 𝜇

( 

𝐕 

( 𝑡 ) 
3 + 

𝐆 

( 𝑡 ) 
3 

2 𝜇

) ) 

( 𝐀𝐀 

𝑇 ) −1 (27) 

ectorizing 𝐃 

( 𝑡 +1) and H 3 , the Eq. (26) can also be written as 

 𝐇 

𝑇 
1 ⊗ 𝐈 + 𝐈 ⊗𝐇 2 ) vec ( 𝐃 

( 𝑡 +1) ) = vec ( 𝐇 4 ) (28)

here ⊗ denotes the Kronecker product, and vec( · ) is the vectorization
peration that stacks all columns of matrix into a vector. Hence, 𝐃 

( 𝑡 +1) 

an be computed as 

ec ( 𝐃 

( 𝑡 +1) ) = ( 𝐇 

𝑇 
1 ⊗ 𝐈 + 𝐇 

𝑇 
3 ⊗𝐇 2 ) 

−1 
vec ( 𝐇 4 ) (29)

eference [38] introduces a more efficient way to compute 𝐃 

( 𝑡 +1) . Since
 1 and H 2 are real symmetric matrices, they can be diagonalized by
igendecomposition, that is, 𝐇 1 = 𝐆 1 𝚺1 𝐆 

−1 
1 and 𝐇 2 = 𝐆 2 𝚺2 𝐆 

−1 
2 , where

1 = diag ( 𝑎 1 , 𝑎 2 , … , 𝑎 𝐿 ) and 𝚺2 = diag ( 𝑏 1 , 𝑏 2 , … , 𝑏 𝑆 ) are diagonal matri-
es. In this way, the Eq. (26) is equivalent to 

̃
 

( 𝑡 +1) 𝚺1 + 𝚺2 �̃� 

( 𝑡 +1) = 𝐆 

−1 
2 𝐇 3 𝐆 1 (30)

here �̃� 

( 𝑡 +1) = 𝐆 

−1 
2 𝐃 

( 𝑡 +1) 𝐆 1 . Since 𝚺1 and 𝚺2 are diagonal matrices, the
roblem (30) can be computed as 

 ◦�̃� 

( 𝑡 +1) = 𝐆 

−1 
2 𝐇 3 𝐆 1 (31)

here ○ stands for the Hadamard product, and H is equivalent to 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑎 1 + 𝑏 1 𝑎 2 + 𝑏 1 ⋯ 𝑎 𝐿 + 𝑏 1 
𝑎 1 + 𝑏 2 𝑎 2 + 𝑏 2 ⋯ 𝑎 𝐿 + 𝑏 2 

⋮ ⋱ ⋮ 
𝑎 1 + 𝑏 𝑆 𝑎 2 + 𝑏 𝑆 ⋯ 𝑎 𝐿 + 𝑏 𝑆 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(32) 

fter acquiring �̃� 

( 𝑡 +1) , 𝐃 

( 𝑡 +1) can be computed as 

 

( 𝑡 +1) = 𝐆 2 �̃� 

( 𝑡 +1) 𝐆 

−1 
1 . (33)

he step with the highest computational cost is (33) , which has the com-
utational complexity 𝑂( 𝑆 𝐿 

2 + 𝐿𝑆 

2 ) , which is lower than O ( S 3 L 3 ) of
sing (29) . 

2) Updating 𝐕 

( 𝑡 +1) 
3 : the optimization for 𝐕 

( 𝑡 +1) 
3 is written as 

in 𝐕 ( 𝑡 +1) 3 

‖‖‖‖‖‖𝐕 

( 𝑡 +1) 
3 − 𝐃 

( 𝑡 +1) + 

𝐆 

( 𝑡 ) 
3 

2 𝜇

‖‖‖‖‖‖
2 

𝐹 

, s.t. 0 ≤ 𝐕 

( 𝑡 +1) 
3 ≤ 1 . (34) 

he solution of (34) is 𝐕 

( 𝑡 +1) 
3 = min ( max ( 𝐃 

( 𝑡 +1) − 

𝐆 ( 𝑡 ) 3 
2 𝜇 , 0) , 1) . 

3) Updating the Lagrangian multiplier 𝐆 

( 𝑡 +1) 
3 : 

 

( 𝑡 +1) 
3 = 𝐆 

( 𝑡 ) 
3 + 2 𝜇

(
𝐕 

( 𝑡 +1) 
3 − 𝐃 

( 𝑡 +1) 
)

(35) 

The overall algorithm for the estimation of spectral basis D is sum-
arized in Algorithm 3 . 
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Algorithm 3 Estimate D with A fixed. 

Input : 𝐘 , 𝐙 , 𝐑 , 𝐁 , 𝐒 , 𝐃 , 𝐀 

Output : 𝐃 

Initialization : 
𝐕 3 = 𝐃 , 𝐆 3 = 0 

For 𝑡 = 0 , 1 , ⋯ , 𝑇 3 
(1) Compute 𝐃 

( 𝑡 +1) via the equation (29) 
(2) Compute 𝐕 

( 𝑡 +1) 
3 via solving problem (34) 

(3) Update the Lagrangian multiplier 𝐆 

( 𝑡 +1) 
3 via the equation (35) 

End 
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.3. Computation complexity 

The proposed SSSR method is summarized in Algorithm 1 . The SSSR
ethod is iterated for the estimation of spectral basis and coefficients.

n the estimation of coefficients ( Algorithm 2 ), the steps with the high-
st computational cost in each iteration are computing 𝐀 

𝑡 +1 and 𝐕 

( 𝑡 +1) 
2 

ia (21) . Since the term [ ( 𝐑𝐃 ) 𝑇 𝐑𝐃 + ( 𝜂2 + 𝜇) 𝐃 

𝑇 𝐃 + 𝜇𝐈 ] −1 can be com-
uted and stored in advance instead of being computed in each itera-
ion, the computation complexity of 𝐀 

𝑡 +1 and 𝐕 

( 𝑡 +1) 
2 is 𝑂( 𝐿 

2 𝑁 + 𝑆𝐿𝑁)
nd 𝑂( 𝑆 𝐿𝑁 + 𝑆 𝑁 

2 ) , respectively. Hence, the computation complexity
f each iteration in Algorithm 2 is 𝑂( 𝐿 

2 𝑁 + 𝑆𝐿𝑁 + 𝑆𝑁 

2 ) . In the esti-
ation of spectral basis ( Algorithm 3 ), the step with the highest compu-

ational cost in each iteration is computing (33) , which has the compu-
ational complexity 𝑂( 𝑆 𝐿 

2 + 𝐿𝑆 

2 ) . Hence, the computation complexity
f each iteration in Algorithm 3 is 𝑂( 𝑆 𝐿 

2 + 𝐿𝑆 

2 ) . 
The computation complexity of the SSSR method is 𝑂( 𝑇 1 𝑇 2 ( 𝐿 

2 𝑁 +
 𝐿𝑁 + 𝑆 𝑁 

2 ) + 𝑇 1 𝑇 3 ( 𝑆 𝐿 

2 + 𝑆 

2 𝐿 )) , where T 1 , T 2 , and T 3 are the number
f iterations in Algorithms 1–3 , respectively. 

. Experiments 

In the section, we use both remotely sensed and ground-based HSI
ata sets, to evaluate the effectiveness of the SSSR method. 

.1. Experiment datasets 

We use one ground-based HSI datasets, Columbia Computer Vision
aboratory (CAVE) database [53] , for non-blind fusion, which has been
idely used in the HSI-MSI fusion literatures [33,37,42,54] . The CAVE
atabase has 32 HR-HSIs, which are produced by generalized assorted
ixel camera with high quality. Each HSI is of size 512 ×512 ×31, where
12 ×512 is the spatial resolution, and 31 is the dimensionality of the
pectral mode. Each HSI has the wavelength range of 400 nm–700 nm.
he HSIs from the database are used as ground truth images. The LR-HSI
f size 64 ×64 ×31 is stimulated by firstly blurring the HR-HSI with a
 ×8 Gaussian blur (standard deviation 2), and then by downsampling
very 8 pixels in both two spatial modes for each band of the ground
ruth image. The HR-MSI Z of the same scenario is simulated by down-
ampling X with the spectral model using spectral downsampling matrix
 3 derived from the response of a Nikon D700 camera. 

The two remote sensing HSIs Pavia University [55] and Indian
ines [56] are used for blind fusion. The Pavia University is of size
10 ×340 ×115, which has the 115 spectral bands and 610 ×340 spec-
ral pixels. We crop the top left 256 ×256 pixels for experiments. We
emove water vapor absorption bands, and thus reduce the HSI as 93
ands. To generate the LR-HSI of size 64 ×64 ×93, we firstly blur the
R-HSI by using a 5 ×5 Gaussian blur (standard deviation 2) and then
ownsample every 4 pixels in both two spatial modes of the HR-HSI.
o generate the HR-MSI with size of 256 ×256 ×4, the IKONOS-like
eflectance spectral response filter is used to downsample the HR-HSI
ith the spectral mode. The second remote sensing HSI is Indian Pines,
hich is taken by the NASA’s Airborne Visible and Infrared Imaging
266 
pectrometer (AVIRIS) [56] . The image is of size 128 ×128 ×224 cov-
ring the wavelength range 400nm-2500nm. We have reduced the num-
er of bands to 200 by removing the bands 104–108, 150–163, and 220
f the image because of extremely low SNR and water absorptions in
hose bands. The LR-HSI of size 32 ×32 ×200 is produced by applying a
 ×5 Gaussian blur (standard deviation 2), and then by downsampling
very 4 pixels in both two spatial modes for each band of the ground
ruth image. The HR-MSI with six bands is simulated by Landsat7-like
pectral response. 

.2. Compared methods 

The SSSR method is compared with three state-of-the-art HSI-MSI
usion approaches, including the coupled spectral unmixing (CSU) [37] ,
oupled non-negative matrix factorization (CNNMF) [39] , non-negative
tructured sparse representation (NSSR) [42] , and two two branches
NN (Two-CNN-Fu) [46] . Since the Two-CNN-Fu is blind fusion method,

t is only evaluated on blind fusion case for fair comparison. The other
ompared methods are evaluated for both blind fusion and non-blind
usion cases. 

.3. Quantitative metrics 

In our study, we use five indexes to evaluate the quality of recon-
tructed HSIs. The first index is the peak signal to noise ratio (PSNR),
hich is defined as the average PSNR of all bands for HSI, e.g., 

SNR ( ̂𝐗 , 𝐗 ) = 

1 
𝑆 

𝑆 ∑
𝑗=1 

PSNR ( ̂𝐗 

𝑖 , 𝐗 

𝑖 ) , (36) 

here X 

i and �̂� 

𝑖 denote i th band images of ground truth 𝐗 ∈ ℝ 

𝑆×𝑁 and
stimated HSIs �̂� ∈ ℝ 

𝑆×𝑁 , respectively, and both of them are scaled to a
ange [0, 255]. The PSNR measures the similarities between the ground
ruth image and reconstructed image. The higher the PSNR, the better
he fusion result. 

The second index is the spectral angle mapper (SAM), which is de-
ned as the average angle between the ground truth pixel x j and recon-
tructed pixel ̂𝐱 𝑗 , i.e. 

AM ( ̂𝐗 , 𝐗 ) = 

1 
𝑁 

𝑁 ∑
𝑗=1 

arcos 
�̂� 𝑇 
𝑗 
𝐱 𝑗 ‖�̂� 𝑗 ‖2 ‖𝐱 𝑗 ‖2 . (37) 

he SAM is given in degrees. It measures the spectral quality of the
econstructed HR-HSI. The smaller SAM, the better fusion quality. 

The third index is the degree of distortion (DD), defined as 

D ( ̂𝐗 , 𝐗 ) = 

1 
𝑆𝑁 

‖vec ( ̂𝐗 ) − vec ( 𝐗 ) ‖1 , (38) 

here vec ( ̂𝐗 ) and vec( X ) are vectorizations of matrixes �̂� and X , respec-
ively. The smaller the DD, the better the spectral quality. 

The fourth index is the relative dimensionless global error in synthe-
is (ERGAS) [57] , which is defined as 

RGAS ( ̂𝐗 , 𝐗 ) = 

100 
𝑐 

√ √ √ √ √ 

1 
𝑆 

𝑆 ∑
𝑖 =1 

MSE ( ̂𝐗 

𝑖 , 𝐗 

𝑖 ) 
𝜇2 
�̂� 𝑖 

, (39) 

here c is spatial downsampling factor, 𝜇�̂� 𝑖 is the mean value of �̂� 

𝑖 , and

SE ( ̂𝐗 

𝑖 , 𝐗 

𝑖 ) represents the mean square error of X 

i and �̂� 

𝑖 . The smaller
RGAS, the better fusion results. 

The fifth index is the universal image quality index (UIQI) [58] . In
his paper, we compute the UIQI for each window of size 32 ×32, and
hen average the UIQI of all windows. Let 𝐗 

𝑖 
𝑗 

and �̂� 

𝑖 
𝑗 

denote the j th win-

ow of i th band ground truth image and estimated image, respectively.
he UIQI between i th band images X 

i and �̂� 

𝑖 is given by 

 ( ̂𝐗 

𝑖 , 𝐗 

𝑖 ) = 

1 
𝐻 

𝑀 ∑
𝑗=1 

𝜎2 
𝐗 𝑖 
𝑗 
�̂� 𝑖 
𝑗 

𝜎𝐗 𝑖 
𝑗 
𝜎�̂� 𝑖 

𝑗 

2 𝜇𝐗 𝑖 
𝑗 
𝜇�̂� 𝑖 

𝑗 

𝜇2 
𝐗 𝑖 
𝑗 

+ 𝜇2 
�̂� 𝑖 
𝑗 

2 𝜎𝐗 𝑖 
𝑗 
𝜎�̂� 𝑖 

𝑗 

𝜎2 
𝐗 𝑖 
𝑗 

+ 𝜎2 
�̂� 𝑖 
𝑗 

, (40) 
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Fig. 2. PSNR curves as functions of the number of atoms L for the CD (an HSI 

in the CAVE database), Pavia University, and Indian Pines. 
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here H is the number of windows, 𝜎𝐗 𝑖 
𝑗 
�̂� 𝑖 
𝑗 

is the sample covariance be-

ween 𝐗 

𝑖 
𝑗 

and 𝐗 

𝑖 
𝑗 
, and 𝜇𝐗 𝑖 

𝑗 
and 𝜎𝐗 𝑖 

𝑗 
are the mean value and standard

eviation of 𝐗 

𝑖 
𝑗 
, respectively. The UIQI index for HSI is defined as the

verage value of all bands, i.e. 

IQI ( ̂𝐗 , 𝐗 ) = 

1 
𝑆 

𝑆 ∑
𝑖 =1 

Q ( ̂𝐗 

𝑖 , 𝐗 

𝑖 ) . (41) 

he larger the UIQI, the better the fusion results. 

.4. Parameters discussions 

To evaluate the sensitivity of the SSSR to its key parameters, we
un the SSSR for different values of the number of atoms L , the spar-
ity regularization parameter 𝜂1 , and the non-local spatial similarities
egularization parameter 𝜂 . 
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Fig. 3. PSNR curves as functions of log

267 
The number of atoms of spectral basis L has an important effect on
he fusion process. Fig. 2 plots the PSNR of the image CD (a represen-
ative HSI in CAVE database), Pavia University, and Indian Pines as
unctions of the number of atoms L . As Fig. 2 shows, the PSNR has a
ncrease for three datasets when L and varies from 20 to 80. Then, the
SNR reaches a stable level. Therefore, L is set to 80 for three datasets.

The parameter 𝜂1 is highly related to the effect of the sparse prior.
he higher 𝜂1 , the sparser A . Fig. 3 (a) plots the PSNR of the image CD

a representative HSI in CAVE database), Pavia University, and Indian
ines as functions of log 𝜂1 (log is base 10). As can be seen from Fig. 3 (a),
he PSNR for the three datasets keeps relatively stable as log 𝜂1 varies
rom −7 to −4 , and then it decreases as log 𝜂1 increases. Therefore, we
et 𝜂1 = 1 × 10 −4 for three datasets. 

The parameter 𝜂2 is highly related to the effect of the non-local spa-
ial similarities. Fig. 3 (b) plots the PSNR of the image CD ((a represen-
ative HSI in CAVE database)), Pavia University, and Indian Pines as
unctions of log 𝜂2 (log is base 10). As we can see from the Fig. 3 (b), the
SNR for Pavia University and Indian Pines keeps stable as log 𝜂2 varies
rom −7 to −3 , and then it increases rapidly as log 𝜂2 further increases.
owever, the PSNR for CAVE database has the obvious raise when log 𝜂2 

aries from −7 to −2 , and then it decreases rapidly as log 𝜂2 is larger than
1 . The non-local spatial similarities prior is more effective for the CAVE
atabase, compared with Pavia University and Indian Pines. The reason
ay be that the spatial resolution of the Pavia University and Indian
ines is much lower than that of the CAVE database, and the spectral
ixels in the CAVE database are much similar with each other, which
eeds larger regularization parameter 𝜂2 . We set 𝜂2 = 1 × 10 −4 for Pavia
niversity and Indian Pines, and 𝜂2 = 0 . 015 for CAVE database. 

.5. Experimental results of non-blind fusion 

Non-blind fusion is the case that the spectral response and PSF are
ssumed to be perfectly known. In this section, we show the non-blind
usion results on the CAVE database. 

Table 1 shows the PSNR, SAM, DD, ERGAS, and UIQI of the recov-
red HSIs for the CAVE database. We mark the best results in bold for
larity. As we can see from Table 2 , the SSSR method performs best
mong the compared methods, and NSSR takes the second place. The
SU and CNNMF exploit the prior of spectral unmixing but do not ex-
loit the non-local spatial similarities and a sparse prior of the HR-HSI.
owever, NSSR exploits the prior of non-local spatial similarities and
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Table 1 

Average quantitative metrics of non-blind fusion on the CAVE 

database [53] . 

Method CAVE database [53] 

PSNR SAM DD ERGAS UIQI 

Best Values +∞ 0 0 0 1 

CNNMF [36] 43.56 5.49 1.04 1.207 0.8815 

CSU [37] 41.68 6.68 1.18 1.504 0.8639 

NSSR [42] 45.02 4.69 0.78 0.988 0.8914 

SSSR 45.93 4.38 0.69 0.899 0.9022 

Table 2 

Quantitative metrics of blind fusion on the Pavia University [55] . 

Method Pavia University [55] 

PSNR SAM DD ERGAS UIQI 

Best Values +∞ 0 0 0 1 

CNNMF [36] 42.58 1.96 1.22 1.174 0.9935 

CSU [37] 39.65 2.44 1.62 1.694 0.9889 

NSSR [42] 42.24 1.89 1.30 1.172 0.9930 

Two-CNN-Fu [46] 41.27 2.23 1.37 1.338 0.9923 

SSSR 43.99 1.68 1.07 0.986 0.9952 
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Fig. 4. Average PSNR curves as functions of the spectral bands on CAVE 

database. 
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t  
parse prior of the HR-HSI, but do not fully utilize the priors spectral
nmixing. For purpose of the comparisons of the test methods in differ-
nt spectral bands, Fig. 4 plots the average PSNR curves as functions of
he wavelengths over CAVE database for the compared approaches. The
SSR almost performs best in all spectral bands among the test methods,
s can be seen from Fig. 4 . Besides, all the test methods perform well in
he middle spectral bands, and relatively bad in the first and last a few
(a) LR-HSI (b) CNNMF (c) NSSR (d) SSSR

0 2 4 6 8 10 12 14 16 18

268 
ands. The reason is that a blur exists in the first and last a few bands
59] . To compare the performance in preserving spatial structures of
he test methods, the reconstructed HR-HSIs and corresponding error
mages on flowers (an HSI in the CAVE database) of CNNMF, NSSR, and
SSR at 9 th and 18 th bands are shown in Fig. 5 . Since the CNNMF, NSSR,
nd SSSR performs obviously better than the CSU, we select these three
ethods for visual comparisons. The error images reflect the differences

etween the fusion results and ground truths. From Fig. 5 , we can see
hat these three methods can recover most of the spatial details of the
(e) Ground truth

20

Fig. 5. The first and second rows show the fused and 

error images of flowers at 9 th band, respectively. The 

third and fourth rows show the fused and error im- 

ages of flowers at 18 th band, respectively. (a) LR-HSI; 

(b) CNNMF [36] . (c) NSSR [42] . (d) SSSR. (e) Ground 

truth. 
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(a) CNNMF (b) CSU (c) NSSR (d) Two-CNN-Fu (e) SSSR (f) Ground truth

0 1 2 3 4 5 6 7 8 9 10

Fig. 6. The first row shows the SAM images of the fused Pavia University. The second row shows the SAM images of the fused Indian Pines. (a) CNNMF [36] . (b) 

CSU [37] . (c) NSSR [42] . (d) Two-CNN-Fu [46] . (e) SSSR. (f) Ground truth. 

Table 3 

Quantitative metrics of blind fusion on the Indian Pines [56] . 

Method Indian pines [56] 

PSNR SAM DD ERGAS UIQI 

Best Values +∞ 0 0 0 1 

CNNMF [36] 44.68 1.74 1.28 0.804 0.8714 

CSU [37] 44.93 1.87 1.38 0.833 0.8818 

NSSR [42] 45.55 1.64 1.27 0.735 0.8951 

Two-CNN-Fu [46] 41.56 2.27 2.09 1.060 0.8200 

SSSR 46.88 1.55 1.06 0.677 0.9085 
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R-HSI, though there are a few distortions in the fusion results. Further-
ore, the SSSR method performs best keeping the spatial structures. 

.6. Experimental results of blind fusion 

To better simulate the real data fusion, references [41,60] conduct
xperiments of blind fusion, where the spectral response and PSF are
ssumed to be unknown, which is similar to real data fusion case. We
se the two remote sensing HSIs, i.e., Pavia University and Indian Pines,
or the blind fusion experiments. The deep learning method Two-CNN-
u needs pre-training. The top left 256 ×256 region of Pavia University
s used for testing, and the rest part is used for training. Since the Indian
ines is captured by AVIRIS, the other remote sensing HSIs captured
y AVIRIS are used for training when we test on Indian Pines. In the
xperiments, both of the spectral response and PSF are estimated from
he LR-HSI and HR-MSI by the method proposed in [41] . Tables 2 and 3
how the quantitative metrics of blind fusion on the Pavia University and
ndian Pines, respectively. As can be seen from the Tables 2 and 3 , the
roposed SSSR method still performs the best in terms of all quantitative
etrics, which means that our method is also effective in the blind fusion

ases. The performance of deep learning method Two-CNN-FU is not
ompetitive for the two HSIs. The main reason is that the Two-CNN-FU
oes not incorporate the observation models (3) and (4) , which explore
he relationship among the LR-HSI, HR-MSI, and HR-HSI. Fig. 6 shows
he SAM images of the test methods on the Pavia University and Indian
ines. The SAM images reflect the SAM between the reconstructed HSIs
nd ground truth. As can be seen from the SAM images, the SSSR has
ess spectral errors than other methods on Pavia University. For Indian
ines, the SSSR and CNNMF perform comparably in terms of the SAM
mages. 
269 
. Conclusions 

We present a spatial-spectral sparse representation based method,
ermed as SSSR, to estimate an HR-HSI, by fusing an LR-HSI with an
R-MSI counterpart. In the proposed SSSR method, we formulate the

usion problem as the estimation of the spectral basis and coefficients by
xploiting three important prior information of the HR-HSI, i.e., sparse
rior, non-local spatial similarities, priors of spectral unmixing. We de-
ign the alternative optimization algorithm to update the spectral basis
nd coefficients with these priors. Experimental results on both non-
lind fusion and and blind fusion cases demonstrate the effectiveness of
he SSSR method. 
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